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Abstract

Background: Improving rigor and transparency measures should lead to improvements in reproducibility across the scientific
literature; however, the assessment of measures of transparency tends to be very difficult if performed manually.

Objective: This study addresses the enhancement of the Rigor and Transparency Index (RTI, version 2.0), which attempts to
automatically assess the rigor and transparency of journals, institutions, and countries using manuscripts scored on criteria found
in reproducibility guidelines (eg, Materials Design, Analysis, and Reporting checklist criteria).

Methods: The RTI tracks 27 entity types using natural language processing techniques such as Bidirectional Long Short-term
Memory Conditional Random Field–based models and regular expressions; this allowed us to assess over 2 million papers accessed
through PubMed Central.

Results: Between 1997 and 2020 (where data were readily available in our data set), rigor and transparency measures showed
general improvement (RTI 2.29 to 4.13), suggesting that authors are taking the need for improved reporting seriously. The
top-scoring journals in 2020 were the Journal of Neurochemistry (6.23), British Journal of Pharmacology (6.07), and Nature
Neuroscience (5.93). We extracted the institution and country of origin from the author affiliations to expand our analysis beyond
journals. Among institutions publishing >1000 papers in 2020 (in the PubMed Central open access set), Capital Medical University
(4.75), Yonsei University (4.58), and University of Copenhagen (4.53) were the top performers in terms of RTI. In country-level
performance, we found that Ethiopia and Norway consistently topped the RTI charts of countries with 100 or more papers per
year. In addition, we tested our assumption that the RTI may serve as a reliable proxy for scientific replicability (ie, a high RTI
represents papers containing sufficient information for replication efforts). Using work by the Reproducibility Project: Cancer
Biology, we determined that replication papers (RTI 7.61, SD 0.78) scored significantly higher (P<.001) than the original papers
(RTI 3.39, SD 1.12), which according to the project required additional information from authors to begin replication efforts.

Conclusions: These results align with our view that RTI may serve as a reliable proxy for scientific replicability. Unfortunately,
RTI measures for journals, institutions, and countries fall short of the replicated paper average. If we consider the RTI of these
replication studies as a target for future manuscripts, more work will be needed to ensure that the average manuscript contains
sufficient information for replication attempts.
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Introduction

Background
Research reproducibility is necessary for scientific progress.
However, over the last decade, numerous reports on research
irreproducibility have shed light on a lingering problem, one
that is proving to be both troublesome and costly [1-5]. Ioannidis
[1] and the Open Science Psychology collaboration examined
the issue from a statistical point of view, arguing that multiple
comparisons that are not necessarily reported affect the
published literature. Begley and Ellis [2] described an account
in which their teams attempted to reproduce key cancer studies
and were largely unable to do so; however, they did not share
their data. The Center for Open Science recently published a
series of papers summarized by Errington et al [6], which
describe an open replication attempt that had similar findings
to the work by Begely and Ellis [2]. Vasilevsky et al [4] clearly
showed that approximately half of the reagents in papers cannot
be tracked down, whereas Freedman et al [7] attempted to
visualize the economic impact of irreproducibility.

Fortunately, many stakeholders responded to address these
issues. Funders such as the National Institutes of Health (NIH),
the largest public source of health research funding worldwide
[8], have made significant efforts across multiple fronts. The
NIH advanced open publication efforts with the creation of
PubMed Central. In terms of guidelines, the NIH gathered
copious stakeholder feedback and designed and implemented
rigor and reproducibility guidelines (adapted from the study by
Landis et al [9]). The NIH also rewrote their instructions to
grantees, released numerous training modules and webinars,
and implemented a data sharing policy to improve the
reproducibility of funded research [10,11]. Even some private
funders such as the Gates Foundation have begun requiring their
funded research (both the manuscript and its data) to
immediately become open access once published [7].

Journals and publishers have also responded to this. In an effort
to encourage reproducibility, numerous scientific organizations
and journals have adopted the Transparency and Openness
Promotion guidelines, which focus on establishing best practices
at the level of individual journals [12]. Similarly, the
publisher-driven Materials Design, Analysis, and Reporting
framework is a multidisciplinary research framework designed
to improve reporting transparency across life science research
at the level of individual manuscripts [13]. This framework
provides a consistent, minimum reporting checklist whose
criteria were used in part to create the first Rigor and
Transparency Index (RTI), a journal quality metric focusing on
research methodologies and transparency in reporting [14].
Because of the RTI, journals can be compared using a range of
criteria that impact reproducibility, providing a proxy for
research quality and a strong incentive for improvement.

Unfortunately, these types of indicators and incentives do not
exist for all stakeholders. Research institutions, in particular,

have few options for determining whether investigators will
follow the guidelines. In fact, there is no simple way to see a
university’s corpus, let alone to estimate its quality. Despite
previously contributing to the Reproducibility Crisis [15],
institutional output is still difficult to track and measure. Various
systems for ranking faculty are in place at institutions, including
counting publications, counting citations, and counting high
impact publications; however, issues have been reported when
using the impact factor for these purposes [16,17]. Some
institutions started leaning more heavily on assessments of open
science [18], which reduced the reliance on paper counting or
on the impact of particular journals. Indeed, tying researcher
assessment to any single factor, even if that happens implicitly
by reviewers looking for recognizable journal names, may place
inappropriate pressure on scientists to focus on strategies that
increase research notoriety rather than quality, which can have
wider implications [19,20].

After receiving feedback from several stakeholders [21,22], we
developed a new version of SciScore, an automated natural
language processing tool suite that detects transparency criteria
and research resources within individual papers. In conjunction
with this, we linked published manuscripts with their
disambiguated research institutions. Here, we introduce the
latest version of the RTI, version 2.0, which represents the mean
SciScore over a subset of papers and demonstrates how it can
be used to assess reporting transparency within research
institutions. The fact that the MacLeod laboratory is endeavoring
to register a report assessing institutions on similar metrics
(MacLeod personal communication) suggests the importance
of assessing based on quality rather than citations alone.

Objectives
The overall aim of this study was to establish a scientific
reporting quality metric across institutions and countries and to
highlight the need for high-quality reporting to ensure
replicability within biomedicine, using manuscripts from the
PubMed Central Open Access Initiative and the Reproducibility
Project: Cancer Biology [6].

Methods

Individual Manuscript Processing

Overview
Individual manuscripts were processed using the latest version
of SciScore (research resource identifier [RRID]: SCR_016251).
SciScore uses multiple conditional random field (CRF)-based
models [23] in combination with regular expression patterns
for named entity recognition. For more information on the core
features used within CRF models, please see our previous work
on the Resource Disambiguator for the Web, which used the
same framework [24]. SciScore classifiers currently recognize
27 entity types. New entity types include field sample permits,
general euthanasia statements, inclusion and exclusion criteria,
attrition, general replication statements, number of replications,
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type of replication, age, weight, code availability, data
availability, and statistical tests. Table S1 in Multimedia
Appendix 1 provides a full list of entity types and their
descriptions.

Classifiers were validated using precision, recall, and their
harmonic mean (F1). Their initial performances were calculated
using 10 random splits of the human-curated data, where 90%
was used for training and 10% for testing; each performance
score was the average of all 10 training trials. Classifier
performances are listed by entity type in Table S2 in Multimedia
Appendix 2. The study by Menke et al [14] provides the full
description of how the data sets were labeled and how the
classifiers were trained and tested. In addition to its CRF-based
classifiers, SciScore has begun to implement regular expressions
for detecting protocols, data, and code identifiers. Regular
expression pattern sets were initially adapted from the identifier
patterns listed by [25] (RRID: SCR_003735). These sets were
then adjusted and supplemented accordingly. These patterns
are listed in Multimedia Appendix 3.

In addition, enhanced table detection and tabular data extraction
within SciScore were performed using neural network models.
More specifically, table and section header boundary detection
and subsequent table row detection in the provided free text
were performed with feedforward neural networks using a
sliding context window approach.

New Criteria and Scoring Framework

Of the new criteria added (ie, field sample permits, general
euthanasia statements, euthanasia agents, inclusion and
exclusion criteria, attrition, general replication statements,
number of replications, type of replication, age, weight, protocol
identifiers, code availability, code identifiers, data availability,
data identifiers, and statistical tests), the vast majority have been
implemented in RTI, version 2.0. When creating the manually
checked data sets, we grouped euthanasia and euthanasia agents
to align with the output of the automated pipeline. Some criteria
presented in SciScore’s output, namely oligonucleotides and
statistical tests, were also omitted in terms of scoring, where
we continued to refine their natural language processing
algorithms.

The scoring framework was previously described in our study
using RTI, version 1.0 [14]. To summarize the key findings,

research papers were scored on a 10-point scale, where a
maximum of 5 points was derived from the manuscript’s rigor
adherence and another 5 points from its key resource
identification performance. A comparison of the total number
of identified criteria with the total number of expected criteria
provided the rigor adherence score. Please note that currently,
code availability, data availability, and the various identifiers
(protocol, code, and data) do not yet affect scoring (ie, they do
not contribute to found or expected tallies). This will be
addressed in future studies.

Following a similar found-to-expected scoring system, key
resource identification performance is calculated by comparing
the number of uniquely identifiable resources found (ie, those
with RRIDs or RRID suggestions) to the total number of
resources detected. If no resources or criteria were found or if
the only criteria found does not impact scoring (code
availability, data availability, protocol identifiers, code
identifiers, data identifiers, statistical tests, and
oligonucleotides), then the paper was scored as a 0 and was
considered not applicable. Papers with a score of 0 were
excluded from the data set because there was no way to
determine if scoring was appropriate.

Other than the addition of new criteria, the only key scoring
change between RTI, version 1.0, and RTI, version 2.0, was the
inclusion of more conditional scoring logic within the rigor
adherence section. In RTI, version 1.0, the only conditional
scoring logic being implemented involved cell line
authentication, which was only expected when a cell line was
detected in the manuscript. In RTI, version 2.0, an additional
scoring logic was included. This logic is outlined in Table 1.
As an example, if a criterion was found in the ethics-1 grouping
(IACUC, IRB, or consent), the model would expect at least one
of the group selection criteria (inclusion and exclusion criteria
or attrition), sex, at least one of the demographic criteria (age
or weight), randomization, blinding, and power analysis. If a
manuscript contained an IACUC and age but no other criteria,
the model would detect 2 out of 6 expected criteria, which
translates roughly to a 2 out of a maximum 5 points for this
section. As another example, if euthanasia was detected, we
would expect Institutional Animal Care and Use Committee,
Institutional Review Board, or consent.
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Table 1. Conditional scoring groupings and logic for rigor adherence section.

This grouping is expected when what
is detected?

If this grouping is detected, what is
expected?

Criteria includedGrouping

EuthanasiaGroup selection, sex, demographics,
random, blinding, and power

Institutional Animal Care and Use
Committee, Institutional Review Board,
and consent

Ethics-1

Never expectedRandom, blinding, and powerField sample permitEthics-2

Never expectedEthics-1, group selection, sex, demo-
graphics, random, blinding, and power

Euthanasia statement and euthanasia
agent

Euthanasia

Ethics-1 and euthanasiaRandom, blinding, and powerInclusion and exclusion criteria and at-
trition

Group selection

Ethics-1, euthanasia, and demograph-
ics

Random, blinding, and powerSexSex

Ethics-1 and euthanasiaSex, random, blinding, and powerAge and weightDemographics

Always expectedBlinding and powerRandomRandom

Always expectedRandom and powerBlindingBlinding

Always expectedRandom and blindingPower analysisPower

Never expectedRandom, blinding, and powerReplication statement, number of
replications, and type of replication

Replication

Cell linesSex, random, blinding, and powerCell line authentication and cell line
contamination

Cell line authentication

Never expected; do not affect scoreNever expected; do not affect scoreData availability, data identifiers, code
availability, code identifiers, and proto-
col identifiers

Methods and materials

availabilitya

Never expectedCell line authenticationCell linesCell lines

Never expected; only affects resource
transparency score

Never expected; only affects resource
transparency score

Antibodies, organisms, plasmids, and
tools

Other resourcesb

Never expected; does not affect either
score

Never expected; does not affect either
score

Oligonucleotides, statistical tests, and
incorrect research resource identifiers

Miscellaneousa

aRow indicates criteria that do not affect any score.
bRow indicates criteria that do not affect the rigor adherence score, only the resource transparency score.

Validation

Although some entity types have been previously tested (cell
lines in the study by Babic et al [26] and multiple types in the
study by Menke et al [14]), other entity types and regular
expression patterns have not yet been thoroughly validated on
complete articles outside of training sets. To remedy this, we
tested the performance of our models using 423 papers that were
previously selected at random for manual curation during testing
using RTI, version 1.0. Originally, 2 sets of 250 papers were
randomly selected based on their score during the first run in
November 2019 (SciScore>0: 250 papers; SciScore=0: 250
papers). We used these hand-curated papers as the gold standard
to retest performance during testing by RTI, version 2.0, to
ensure that not applicable papers were out of scope and to
analyze performance on scored papers. Consistent with our
previous methods, if both the curator and the classifier agreed
regarding the presence or absence of an entity type, then we
assumed that the answer was correct and looked no further.
Disagreements, in contrast, were classified as false negatives
or false positives, with the assumption that the curator is always
correct. False negatives occurred when the classifier noted an
entity type as missing when it was really present. False positives

occurred when the classifier incorrectly noted an entity type as
being present when it was missing.

For testing not applicable papers (SciScore=0), a curator (NA)
went through 232 the previously not applicable papers to
determine whether each paper was still expected to be scored
as a 0 even after the addition of new entity types. From the
original 250 papers, 18 (7.2%) papers were removed because
they were previously determined to have either no clear methods
section (highly theoretical papers, editorials, etc) or contained
only supplemental PDFs, which are effectively invisible to our
models [14]. Of these 232 papers, 173 (74.6%) were hand scored
as 0 and represented papers we expected to still be not
applicable. We compared each classifier’s output against our
curator’s for these 173 papers. A total of 87.9% (152/173) of
the papers scored as expected (SciScore=0), and 12.1% (21/173)
of the papers contained false positives across the various entity
types. Entity types with multiple false positives included attrition
(7/21, 33%), randomization (4/21, 19%), field sample permit
(3/21, 14%), software tools (3/21, 14%), weight (3/21, 14%),
and age (2/21, 10%).

For testing the scored papers, another set containing 250 papers
(SciScore >0) was hand curated without exception. Hand-curated
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data from our first run were supplemented with data for our new
criteria, except for statistical tests, which were not tracked
(similar to oligonucleotides and plasmids). In all, 2 curators
(NA and JM) went through these papers and were blinded to
our models’ outputs (50 papers for NA and 200 papers for JM).
This information was again compared with our classifiers’
performances; the results of this analysis are shown in Table 2.
All entity types had curator-classifier agreement rates >80%;
many were >90%. As in our previous analysis, the overall

agreement represents the additive probability for instances where
multiple resources were mentioned. In all the cases, the
agreement rate was measured above the raw classifier F1 rate.

Overall, there was no significant decline in performance across
the criteria featured in either version; any difference in scoring
resulted from the addition of new training data or enhanced
conditional scoring. As a result of these analyses, we did not
seek to further tune the parameters.

Table 2. Rates of false negatives, false positives, and overall agreement based on manual analysis of 250 scored papers (SciScore >0) from our data
set.

Overall agreementFalse negativesFalse positivesEntity type

Size and rate, (agreed, n) (%)Size and rate, n (%)Size and rate, n (%)

Rigor criteria

225 (90)11 (4.4)14 (5.6)Institutional review board statement

238 (95.2)11 (4.4)1 (0.4)Consent statement

231 (92.4)17 (6.8)2 (0.8)Institutional animal care and use committee
statement

231 (92.4)0 (0)19 (7.6)Field sample permit

237 (94.8)7 (2.8)6 (2.4)Euthanasia

223 (89.2)17 (6.8)10 (4)Inclusion and exclusion criteria

208 (83.2)7 (2.8)35 (14)Attrition

247 (98.8)3 (1.2)0 (0)Type of replication

217 (86.8)16 (6.4)17 (6.8)Number of replications

221 (88.4)16 (6.4)13 (5.2)General replication

226 (90.4)4 (1.6)20 (8)Randomization of participants into groups

240 (96)5 (2)5 (2)Blinding of investigator or analysis

234 (93.6)4 (1.6)12 (4.8)Power analysis for group size

223 (89.2)21 (8.4)6 (2.4)Sex as a biological variable

201 (80.4)44 (17.6)5 (2)Age

222 (88.8)22 (8.8)6 (2.4)Weight

234 (93.6)1 (0.4)15 (6)Cell line authentication

250 (100)0 (0)0 (0)Cell line contamination check

245 (98)2 (0.8)3 (1.2)Protocol identifiers

245 (98)1 (0.4)4 (1.6)Code availability

248 (99.2)2 (0.8)0 (0)Code identifiers

226 (90.4)0 (0)24 (9.6)Data availability

220 (88)3 (1.2)27 (10.8)Data identifiers

Key biological resources

243 (97.2)5 (2)2 (0.8)Antibody

240 (96)7 (2.8)3 (1.2)Organism

240 (96)4 (1.6)6 (2.4)Cell line

204 (81.6)38 (15.2)8 (3.2)Software project and tools

J Med Internet Res 2022 | vol. 24 | iss. 6 | e37324 | p. 5https://www.jmir.org/2022/6/e37324
(page number not for citation purposes)

Menke et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Text Mining the Open Access Subset of PubMed
Central

Overview
We downloaded and processed all PubMed Central (PMC;
RRID: SCR_004166) articles whose full text was available in
the PMC Open Archives Initiative (OAI) data set starting April
2021 (processing took approximately 2 months). The PMC-OAI
data set was initially downloaded as multiple directories (1 per
journal), containing articles available for text mining. These
directories were consolidated into 4 shards (or parts), depending
on the number of manuscripts available within each journal.
Each shard was then processed using the proposed models.
Consistent with our previous RTI study, abstract-only articles
and articles without methods sections were excluded [14].
Similarly, articles only available as PDFs were not included
within the open access (OA) subset, and, as such, were excluded
from our analysis. We included data from journals, institutions,
and countries that had published >10 papers per year. This
information is available in the Multimedia Appendix 4. We
limited our analyses to journals, institutions, and countries that
had published >10 papers per category, such as year, if the data
were only differentiated by year (eg, all by country vs all by
country by year). We obtained data from 2,153,877 manuscripts
representing 9398 journals, 37,648 research institutions, and
200 countries (based on research institution metadata in the
Research Organization Registry [ROR]).

Deduplication and Disambiguation of Research
Institutions
We sought to disambiguate the authors’ affiliation strings using
the standardized set of institutions listed in the ROR [27]. ROR
provides unique identifiers and metadata for many institutions
worldwide.

The ROR has developed an application programming interface
(API) to search for and retrieve information from its registry.
It is able to make a best guess at the institution identifier given
an input affiliation string using a combination of substring
searches, fuzzy word comparisons, and hard-coded heuristics.
Although their API is offered as a web service, initial tests raised
concerns of rate-limiting and slow response times for a large
volume of requests. However, a developer version was obtained
from the ROR [28], which allowed us to run an API instance
on a local machine and avoid network concerns. We used the
API end point organizations?affiliation= for disambiguating

affiliation strings. For each query, a confidence score was
provided along with a binary match or no match field. Almost
all queries returned a best guess institution from the ROR,
although the API did not declare confidence for all queries. We
recorded all guesses in our database, whether the API was
confident, the confidence using the chosen field of the API
response, and the time that the API took on our local machine.

We also developed our own tool for disambiguating affiliations
(available on GitHub [29]). We used a regular expression
(Figure 1) to extract an institution’s name from each affiliation
string. Affiliation strings were split on all semicolons, regardless
of length, to capture cases in which multiple affiliations were
present in a single string. In these cases, a single paper could
be included in the counts of multiple institutions (eg, UCSD;
UCLA) where each institution’s paper count would each increase
by 1 or be counted multiple times by a single institution (eg,
Department of Computer Science, UCSD; Department of
Biological Sciences, UCSD) where the paper would be included
twice in UCSD’s count. ROR data were loaded onto a
PostgreSQL instance, and institution names were stored in a
tsvector column for fast lookup of the regular
expression-extracted institution name. The workflow is
illustrated in Figure 1.

To compare the performance of our tool with that of ROR’s, 2
curators (JM and PE) matched 200 affiliation strings from a
simple random sample of all affiliations from our PMC set (100
per curator) to institutions contained within the ROR database.
For cases in which curators could not locate a matching ROR
institution, the affiliation string was left blank. A total of 186
strings were matched to ROR institutions. The accuracy was
calculated for each tool. Accuracy was defined as the percentage
of institutions in which the result of the tool was equal to the
result from the hand-curated set. Only when the tool and
hand-curated set agreed exactly (ie, either both reported no
matching ROR IDs or both reported the exact same ROR ID)
was an accurate match declared. Calculations were performed
for 2 cases: high confidence matches only and all matches (high
and low confidence). The results of this comparison are shown
in Table 3.

As shown in Table 3, both algorithms performed similarly in
terms of accuracy. Our in-house tool’s speed greatly
differentiated itself from ROR’s. As a result of this analysis,
we elected to use our in-house tool over ROR’s for institutional
disambiguation.
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Figure 1. Disambiguation of affiliation strings workflow. ROR: Research Organization Registry; regexA: exact regular expression.

Table 3. Affiliation to institution matching: in-house tool compared with the Research Organization Registry (ROR) application programming interface
and a human-curated set of 200 affiliations.

AccuracyTime per affiliation (ms)Confidence

RORIn-houseRORIn-house

0.66660.5323400.901.759High only

0.70430.7043400.909.745High and low

Department Identification and Grouping
To account for differing reporting standards and expectations
across fields, we sought to measure how semantically similar
papers are. Specifically, we used abstract similarity measures
to group departments of major UK research institutions, so we
could compare departments to their analogs at other institutions.

All affiliation strings that contained the strings United Kingdom,
Scotland, Wales, or England were included. The following regex
was used for extracting department names from the affiliation
strings:

[^^, ]*(?:depar tment |centre |center | sect ion |divis ion |
institute|institution|program|school|museum|group)[^,]*

Unwanted characters at the beginning of each affiliation string
were removed according to the regex ^[^A-Z]*, and the

surrounding whitespace was stripped. All affiliation data along
with corresponding PubMed Identifiers were stored in a
PostgreSQL table.

For judging semantic similarity across papers, we used the
averaged word vectors (normalized by L2) of the abstracts.
First, abstracts were extracted from the PMC XML data dumps
(all data available before December 12, 2020), excluding articles
with a publication type of Comment, Published Erratum, Review,
or Preprint. Abstract text was stored in the PostgreSQL table
along with the PubMed Identifier. Then, a random sample of
1% of all abstracts in the database was used to train fastText
[30] word embeddings with default hyperparameters and
dimensionality of 300. Then, for each abstract in the table,
fastText’s getSentenceVector function was used to determine
the averaged L2 normalized word vector for each abstract, and
the result was stored as a vector in the PostgreSQL table.
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To cluster departments based on this similarity measure, we
first found the average abstract vector for departments with
>200 papers. This was a simple mean of all abstract vectors
with an identical department name, previously described, and
top-level institution as determined by our in-house
disambiguator. Then, using t-SNE as implemented by
scikit-learn ([31]; RRID: SCR_002577) with a perplexity of 7,
we reduced 300 dimensions to 2 so that similarities between
departments could be visualized. Finally, we used scikit-learn
k-means clustering on the reduced data to identify 10 clusters
of similar departments. To compare the RTIs across departments
in each cluster, we found the RTIs across all papers in a given
department and ranked departments based on the RTIs within
each cluster.

Statistics
Journals, institutions, and countries were only included in our
analyses if more than 10 papers were scored per year unless
stated otherwise.

For SciScore named entity classifiers and disambiguation
algorithms, we used the standard measures to quantify
performance: recall (R), precision (P), and the harmonic mean
of R and P (F1). These values were determined using the
following formulas:

(1)

(2)

(3)

False negatives are criteria that were missed by our models but
were labeled by a human curator and false positives were
incorrectly identified as an entity by our models.

The partial correlation coefficient was calculated using
Spearman rank-order correlation coefficient using the following
equation:

(4)

where YABC is the correlation between A and B adjusted for C.

Ethics Approval
We did not obtain institutional review board approval to conduct
this study, as we did not use any human or animal participants,
thus making this study exempt.

Results

Overview
Using our institutional disambiguation model, we obtained data
from 2,153,877 articles from 9398 unique journals representing
37,648 institutions across 200 countries. Of these articles,
1,971,824 (91.55%) contained rigor and transparency criteria

(SciScore>0; RTI 3.99). The remaining 182,053 (8.45%) articles
contained no mention of such criteria (SciScore=0; not
applicable). As a result, we did not include these articles in our
primary analyses; they did not contain a methods section or
were out of scope [14]. We were able to confidently match
1,947,966 articles to 37,067 distinct institutions across 200
countries, where SciScore>0. The RTI data are available in
Multimedia Appendix 5.

Criteria Trends Over Time
We determined the proportion of papers that addressed
individual rigor criteria within the PMC-OAI subset. Data for
RTI, version 1.0, represent PMC-OAI manuscripts published
between 1997 and 2019. RTI, version 2.0, data are from the
PMC-OAI manuscripts published between 1997 and 2020. Both
the metrics steadily rise over time, although there is relatively
little difference between RTI, version 1.0, and RTI, version 2.0,
in terms of their RTIs. As shown in Figure 2, RTI has steadily
increased over the last two decades, showing improved levels
of transparency within machine-accessible PMC manuscripts.
Out of the rigor criteria shown in Figure 3, author addressment
of randomization increased the most between 1997 and 2020
(12% to 31%). Blinding (3% to 9%), power analysis (1% to
8%), and replication addressment (24% to 27%), all improved
over this timeframe as well. Even at their maximum, blinding
and power analysis were addressed in <10% of the studies.
Replication addressment represents the percentage of papers
that mention replication, number of replications, or type of
replication. Figure 4 shows the data, code, and protocol presence
across all the papers, regardless of score. Here, we considered
a paper to address data presence if the paper had a data
availability statement (eg, all data used within this study is
available in the supplementary methods or data is available
upon request) or a data identifier (ie, common accession number
patterns in data repositories). Code accessibility was determined
in a similar manner. We note that this is a conservative estimate
of data and code accessibility, as we only checked the methods
and materials sections, and some journals place these in a section
completely separate from the materials and methods, whereas
others use the references section. In addition, we were unable
to check if identifiers actually exist owing to slow resolver
resolution or if data or code is actually present in the
supplementary files. Data addressment (5% to 17%), code
addressment (0% to 3%), and the number of protocols cited (0
to 946 papers), all increased between 1997 and 2020.

In Figure 5, when looking at criteria commonly associated with
cell line reporting standards (sex, cell line authentication, and
contamination), we limited our analysis to papers containing at
least one cell line and no IRB or IACUC, as detected by our
models. As shown, the number of papers using cell lines
continues to grow (470 to 21,854). Within this set, sex did not
improve (14% to 13%), whereas the reporting of both cell line
authentication (6% to 8%) and contamination (1% to 8%)
increased but remained at relatively low levels. As shown in
Figure 6, studies containing at least one organism were used to
inform our analysis of the organism’s demographic reporting
rates. Reporting rates for sex (40% to 65%), age (31% to 54%),
and weight (3% to 15%) improved steadily across the board.
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Figure 2. Average score for Rigor and Transparency Index (RTI), version 1.0 (1997-2019) and version 2.0 (1997-2020). PubMed Central- Open
Archives Initiative steadily increases over time. Differences between versions are negligible.

Figure 3. Proportion of papers addressing various bias limiting criteria (ie, blinding, randomization, power, and replication) across all scored papers
(1997-2020).

Figure 4. Data, code, and protocol addressment across all papers (1997-2020).
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Figure 5. Data shown from 1997 to 2020. Left axis shows the percentage of papers containing cell lines that authenticate, check cells for contamination,
and include sex. Right axis shows the number of papers using cell lines each year.

Figure 6. Data from 1997 to 2020. Percentage of papers describing demographic information (sex, age, or weight) that contain at least one transgenic
organism.

Criteria Across Journals, Research Institutions, and
Countries
Among the journals with >10 papers scored in 2020, the top
performer in RTI was the Journal of Neurochemistry (RTI 6.24).
Of the journals with >1000 papers scored in 2020, a total of 2
journals were tied for the lead in RTI, medicine, and nutrients
(RTI 5.02). For reference, the RTI across all the papers scored
in 2020 was 4.13. Further information on journal performance
and journal performance by year is available in Multimedia
Appendix 5.

The data in Figure 7 represent 186,045 OA papers published in
2020. The 2 countries with the greatest number of institutions,
represented in Figure 7, were China (8/25, 32%) and the United
States (5/25, 20%). Many other countries had either 1 or 2
institutions represented. Among individual institutions, Capital
Medical University (n=10,125) had the highest RTI (4.75).

We were able to successfully match our institutional data (for
institutions with ≥100 papers in 2013) to the names of 110
institutions listed in the data set used by Lepori et al [32] in
2019 to compare university revenues with their publication and
citation counts. For the 110 matched institutions, Table 4 shows
the correlation calculations between the 3 variables (all from
2013): total number of academic staffs, current total revenue,
and RTI. As expected, there was a positive correlation (0.62)
between the total number of academic staff and the current total
revenue, which makes sense—as staff grows, so do costs. We
also performed a partial correlation analysis between the total
revenue and RTI, correcting for the total number of academic
staffs. This shows that there is a weak negative relationship
between an institution’s total revenue and its RTI, although the
correlation coefficient (−0.12) suggests that this is not
significant. Correlation values were calculated using Spearman
rank-order correlation coefficient.
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Figure 7. Analysis of Rigor and Transparency Index (RTI) across research institutions in 2020. The left axis represents the RTI. The 50 institutions
with the most papers published in 2020 were ranked according to their RTI. The 25 institutions with the highest RTI are shown.

Table 4. Spearman rank-order correlation coefficient calculations between the number of academic staffs, the total revenue, and Rigor and Transparency

Index (RTI).a The partial correlation coefficient between revenue and RTI was calculated to be -0.1154.

RTICurrent total revenueTotal academic staff

N/AN/Ab1Total academic staff

N/A10.6208Total current revenue

1−0.1648−0.1209RTI

aData from 2013. A partial correlation was calculated between total revenue and RTI correcting for the number of academic staffs.
bN/A: not applicable.

Department Identification and Grouping
Institutional departments should be compared directly to
meaningfully compare institutions at more granular levels, as
reporting requirements and standards vary across fields.
Therefore, we advise against interfield comparisons for this
reason. We grouped the largest 80 UK departments by paper
count, using the semantic similarities of their abstracts.
Following the procedure described in Section 2.2, we computed
a t-distributed stochastic neighbor embedding intraplate of
abstract vectors across departments and then performed k-means
clustering to generate discrete clusters. We visualized each
department’s RTI to allow intracluster comparisons (Figure 8).
As shown in Figure 8, there are large differences between the
RTIs of different fields; for example, the papers of chemistry
departments tend to have lower RTIs than psychiatry
departments. Therefore, such a clustering is necessary for a fair
departmental comparison. We note that departments with
alternative spelling are present in this data set, such as the
London School of Hygiene & Tropical Medicine and London
School of Hygiene [& OR and] Tropical Medicine. In this
analysis, we did not remove these duplicates; however, it is

perhaps a good validation that they tended to cluster together
and their scores were reasonably similar.

We visualized the RTI for countries with 100 or more scored
papers per year available in PMC-OAI between 2010 and 2020
(Multimedia Appendix 6). Each frame represents a different
year, where blue represents relatively high scores, and yellow
represents relatively low scores. Ethiopia was consistently one
of the best performing countries, leading all countries in RTI
in 9 out of the 11 years; Ethiopia achieved the highest country
average in 2020 (4.98; for reference, RTI in 2020 was 4.13).
Norway had the highest RTI papers published in 2010 and 2011.
None of the countries consistently had the lowest RTI. The
countries with the lowest average in multiple years were Russia
(2011, 2013, and 2018), Romania (2012 and 2014), and Ukraine
(2015-2017). In terms of volume, the United States and China
consistently published the most papers, with the United
Kingdom serving as a distant third.

A graphic with coloring scaled to a country’s RTI has been
shown over the last 10 years for countries with 100 or more
papers. Blue indicates relatively high average values. Yellow
indicates relatively low average values. This video is available
as an .mp4 file in Multimedia Appendix 6.
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Figure 8. Clustering and Rigor and Transparency (RTI) ranking of the top 80 UK departments by paper count are shown. The t-distributed stochastic
neighbor embeddings of the semantic vector representation of each department’s average paper abstract is shown, with k-means clusters indicated by
coloring (left panel). Field names are shown for clusters with a single unifying theme among all departments. The labels were added by hand for
presentation purposes. We also show the average RTIs of each department (right panel).

Criteria for Replicating a Study
The Cancer Reproducibility Project, headed by the Center for
Open Science and Science Exchange, determined whether the
top 50 cancer papers could be reproduced [6]. For each study,
the project generated registered reports containing bulleted
descriptions of the experimental protocols, data analyses, and
replication study reports, which contained free-text descriptions
of methods and results from each replicated experiment. The
registered reports described their protocols step by step using
bullet points, and resources were often only mentioned in
reagent tables. Replication studies, in contrast, described both
protocols and reagents in paragraphs throughout the methods
sections. In addition, the registered reports seemed to focus
more on protocol-specific best practices rather than on reporting
best practices (eg, RRID use), which makes sense considering

that they intend to report the results later. We expect that these
differences largely contributed to the differences in scores
between the registered reports and the replication studies.

To test our assumption that RTI may serve as a reasonable proxy
for replicability, we compared the original studies, which often
lacked sufficient detail for performing replication without
contacting the original author, with the replicated studies. Figure
9 shows that the replicated reports (RTI 7.61, SD 0.78) were
indeed significantly higher (P<.001) than their originating
reports (RTI 3.39, SD 1.12). The scores of original papers that
had responsive authors (RTI 3.45, SD 1.06) and those that did
not have responsive authors (RTI 3.33, SD 1.06) were not
significantly different on a paired, equal variance t test with 1
tail (P=.33). The underlying data are provided in Multimedia
Appendix 4 [33].

Figure 9. Measured SciScores for Cancer Reproducibility Project papers. Original papers are in blue, registered reports are in orange, and replication
studies are in green. A smoothed density plot of scores is shown in solid color. The white dot represents the median score, the thick black line the
interquartile range (IQR), and the thin black line 1.5x IQR.

J Med Internet Res 2022 | vol. 24 | iss. 6 | e37324 | p. 12https://www.jmir.org/2022/6/e37324
(page number not for citation purposes)

Menke et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Discussion

Principal Findings
In this study, we introduced the latest version of the RTI, that
is, RTI, version 2.0, a research reporting metric quantifying
research quality and reporting transparency. The RTI lists
journals, institutions, and countries with their composite scores
and inclusion rates for rigor adherence and resource
identifiability. We analyzed a significant number of manuscripts
within the OAI subset of PMC, providing an opportunity to see
general reporting trends within biomedicine and where we
generally fall short within scientific reporting. In addition, we
highlight the importance of high-quality reporting and
demonstrate RTI’s potential as a replication metric, using
manuscripts from the Reproducibility Project: Cancer Biology.
As with all generalized metrics, RTI is not perfect, and we do
not expect all papers to score a perfect 10. This paper received
a score of 7. As with any automated system, we cannot expect
to handle all the edge cases. We expect RTI to be generally
applicable to biomedical research. Other fields, for example,
chemistry and physics, may not fit as well [14]. Although many
of these less applicable papers are adequately handled as not
applicable or through our more general rigor criteria, false
positives do occur within automated systems. We are
continuously working to improve RTI’s generalizability through
additional criteria (eg, data or code availability) and enhanced
conditional scoring, where criteria are only factored in when
relevant. Our overall aim is not to have every paper score a 10
but rather to help stakeholders improve papers that would
otherwise score very poorly.

Technical Considerations
Unfortunately, the 2 primary limitations present in RTI, version
1.0, are still present in RTI, version 2.0. These issues can be
summarized as follows. First, the OA subset represents only a
fraction of the total biomedical literature and must therefore be
considered a biased subsample. Second, papers with
supplementary methods contained in PDFs are still unreadable
to our algorithms, resulting in loss of data. We recognize that
this is often due to constraints placed on the authors by the
journal. As such, we again implore journals to lift restrictions
that would limit the impact and reusability of a manuscript.
These limitations have been described in our previous work
[14].

Owing to the expanded abilities of SciScore, new considerations
arose as well. Of these considerations, one of these stemmed
from the addition of our data and code resolver, which attempts
to resolve identifiers, URLs, and digital object identifiers by
checking for their existence in external sources. To process
millions of articles in a timely manner, we were forced to place
a time restriction on the resolver. If the outside response time
was too slow (≥5 seconds), we failed to resolve it, negatively
affecting the reliability of our data. Therefore, we will not be
able to comment on the validity of the identifiers detected, as
we cannot differentiate between a slow outside resource and
one that does not exist. In addition, because we only searched
the materials and methods sections of the research manuscripts,
as defined by Journal Article Tag Suites XML tags, we lost data

only mentioned in other sections (eg, results). Anecdotally, this
is especially true of criteria such as attrition, which is often
mentioned in the results section and code or data availability
statements, which can be listed within their own section at the
end of manuscripts. We do report these but do not score these
items for this reason. We expect to emend these issues in future
versions of RTI.

SciScore’s ability to process tables also improved in RTI,
version 2.0, which had unintended side effects. Reagents were
often counted twice in papers that used reagent tables (eg, STAR
[structured, transparent, accessible reporting] methods) in
addition to describing the reagents in their methods sections.
In an extreme case, Hill et al [34] paper reported using 191
antibodies (listed in their STAR table), but SciScore identified
276 antibodies (identified from both the STAR table and the
methods section text). The tool was not able to determine that
the antibodies in the text and table were the same reagent for
approximately half of the time in this study. This points to the
need for continual improvement of artificial intelligence tools,
as improvement in some aspects can lead to unintended
consequences for others.

Analysis of Reporting Trends

Overview
After failing to replicate key findings in numerous scientific
manuscripts, researchers introduced a variety of standards,
guidelines, and checklists aimed at improving scientific
reporting and with it, scientific reproducibility [10,13,35]. These
guides appear to improve scientific reporting to some extent
(Figure 2), although this effect seems be context specific [36].
Although researchers should try to ensure that their own
manuscripts meet current best practices before submission,
enforcing these standards should not fall entirely on journal
staff. Researchers increasingly rely on multiple biological or
software tools (antibodies, cell lines, plasmids, etc); these tools
alone can have extremely complicated best practices, which
may not be well understood by all researchers [37-39]. As such,
authors, editors, and reviewers, especially in more general topic
journals, may struggle to know which best practices to enforce
and how to enforce them. In addition, 8% to 9% more papers
are produced every year [40], and the current rate is roughly 2
papers added to PubMed every minute. This means that the task
of spreading and checking best practices is difficult. Checklists
can help guide best practices, and enforcing these checklists
should lead to improved reporting standards [41], but given the
scale of publishing, the use of automatic checklist tools such as
SciScore and others, more focused tools such as Barzooka
(continuous data in bar graphs), JetFighter (color-blind
accessibility in visualizations), ODDPub (data and code
availability), and RipetaScore (authorship, ethics, and data or
code availability) [42-45], should help authors and reviewers
improve manuscripts and address common checklist items and
omissions consistently across many journals. In addition,
automatic checklist completion can only help speed up the
review process, which is a notoriously slow endeavor [46].
SciScore currently incorporates criteria from sources such as
the ARRIVE (animal research: reporting of in vivo experiments)
guidelines, the NIH standards, and the Materials Design,
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Analysis, and Reporting checklist [9,13,35]. Other automated
tools check for figure quality or the presence of limitations
statements in the discussion section, which is an important part
of several checklists. Additional checklist criteria (eg, PRISMA
[Preferred Reporting Items for Systematic Reviews and
Meta-Analyses]) should be added in future work, but automated
tools such as this should be used to improve the reporting quality
within the ever-growing literature. The RTI serves as a potential
way to track how often these standards are met across a variety
of stakeholders at various organizational levels.

Trends Across the General Literature
Experimental replication is a technique standardly used across
many different fields. Replication metadata are important to
report because readers need it to make accurate inferences about
the trustworthiness of an experiment [47]. In 2020, Frommlet
and Heinze [48] used meta-analysis to analyze 37 mouse
experiments published in Immunity for experimental replication
data. Although we did not replicate their exact study, our results
are comparable. We limited our analysis to manuscripts
containing a statement addressing IACUC approval and a Mice
Medical Subject Headings term in 2020. We analyzed a few
replication reporting criteria (the proportion of papers containing
an explicit replication statement, number of replications, or type
of replication). A major difference in our analyses is that
Frommlet and Heinze [48] determined the presence of
replication when the manuscript contained a figure indicating
data representative of multiple experiments or when an explicit
statement was made, whereas our classifier was trained
exclusively on explicit statements (eg, “experiments were
replicated in triplicate”). Of the manuscripts examined by them,
92% (34/37) contained some form of replication, whereas our
data showed a far more conservative rate of 44% (1736/3917).
In line with our data, Frommlet and Heinze observe that “the
exact number [of replications] is frequently not even specified”
and “in virtually all cases, [the replication information provided]
is insufficient” [48]. Although not directly comparable, our data
show that 42% of mouse research papers in 2020 mentioned a
number associated with the amount of independent replications
and only 6% explicitly mentioned the type of replication they
were performing (ie, technical or biological). Although different
in specifics, our results both indicate that replication metadata
are generally underreported (at least in mice experiments),
showing an easy source of potential improvement within
research reporting.

Replication is not the only factor that negatively affects research
reproducibility. Misidentified and contaminated cell lines
continue to be a significant problem, with reported use rates
varying between 10% and 50% [49-51]. Some reporting tools
such as RRIDs appear to have lessened the incidence rates of
problematic cell lines, as researchers are able to more easily
look at a specific cell line’s history [26], but there is still more
work to be done. The most direct solution is to properly
authenticate cell lines in the laboratory. Although different
methods are continuing to be developed, short tandem repeat
DNA profiling is currently most used [52-54]. However, this
process is both time-consuming and expensive [55]. On the
basis of our analysis of papers containing at least one cell line
from 1997 to 2020, the rates of authentication have increased

but are still low (6% to 8%). Similarly, the rate of contamination
checks increased from 1% to 8% across the same time frame
(Figure 5). In 2015, Nature reported that between 2013 and
2015, only 10% of authors submitting cell line–based papers
(n=60) reported authenticating their cell lines [56]. The
similarity in values indicates that cell line authentication is
severely underreported (and most likely underperformed) in a
large portion of biomedical literature. Nature’s solution was to
enhance its current submission policies to require authors to
provide further details on cell line testing. This is easier said
than done though. In 2010, the International Journal of Cancer
became the first journal to require cell line authentication
information [57]. Overall, this manual effort proved extremely
effective, as the number of problematic cell lines published
effectively went to 0 after implementation. This came at an
administrative cost, as 240 additional hours were required to
enforce these guidelines over the course of the 3-year study
[58]. Fortunately, much of the work listed (eg, checking the
manuscript and cell line–related data entry) can be automated.
On the basis of this, we recommend that journals implement
stringent cell line authentication requirements similar to those
of the International Journal of Cancer and make use of
automated tools to limit the administrative costs of best practice
enforcement. Future studies could compare journal
authentication and contamination rates against the specific
guidelines implemented by each journal to determine which
guidelines and enforcement strategies are most effective. Future
models could also differentiate between authentication methods
for more granular analysis.

Criteria Across Journals, Research Institutions, and
Countries
By directly linking institutions with their research manuscripts,
we created a way to track and rate an institution’s published
output. The latest version of the RTI, that is, RTI, version 2.0,
lists an institution's adherence to various reproducibility-related
criteria, as well as the identifiability of its research resources
(antibodies, organisms, plasmids, etc). The RTI lists the
composite scores for multiple entities (ie, journals, institutions,
and countries). On the basis of our analysis of the data obtained
from the study by Lepori et al [32], there is no strong correlation
(r=−0.12) between an institution’s RTI and its total revenue,
after correcting for the size of the university through the number
of academic staffs.

Although indicators such as global rank, funding, and even
citations may be, to some extent, richness measures [32,59],
the RTI is not. There is no significant correlation, which leads
us to believe that research quality is not entirely driven by
funding (or how rich a university or country is). Anecdotally,
we believe this is largely owing to a researcher’s knowledge of
best practices and the community’s ability to implement and
enforce them. The first condition may appear to be met as an
increasing number of journals implement best practice
submission guidelines and checklists, but this is only the first
step. These guidelines must be accessible and easily understood
if they are to be effectively used [36]. Once the first condition
is met, the second condition should follow more easily,
especially if aided by automated tooling. We hope that by
comparing research institutions based on the quality of their
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research outputs, they consider rigor and transparency more in
their decision-making with the ultimate goal being a shift from
publish or perish to rigor and reproducibility.

To further encourage this, we aimed to apply RTI comparisons
at the departmental level. Different fields can have drastically
different reporting requirements and standards, making more
granular comparisons far more tenuous. Nominal grouping alone
may not be sufficient, as department names may not fully
represent the breadth of a department or the nuances of the
different subfields within. To mitigate this, we clustered the top
80 UK departments based on the semantic similarity of their
abstracts. As shown, the generated clusters aligned remarkably
well with department names, despite being fed only semantic
abstract information (Figure 8). Not only do these clusters
quantitate differences across departments but they also provide
new information that cannot be obtained from name alone. For
instance, based on other departments within the same cluster,
it appears that the Department of Medicine at the University of
Oxford focuses on epidemiological or public health research,
whereas the Department of Medicine at the University of
Cambridge tends to publish cellular biology research. Using
our proposed clustering method, we can quantitate such nuanced
differences between departments, allowing a like-to-like
comparison of RTIs at the departmental level.

After adding both institution- and country-specific data (as well
as expanding the entity types detected), we believe that the
RTI’s ability to serve as a proxy for good rigor and transparency
practices has only been enhanced. Institutions and countries can
now more easily identify areas where they fall short in rigor
and reproducibility as well as monitor the impact of various
scientific policies. We hope that the RTI will continue to
highlight the importance of sound scientific practices.

Criteria for Replicating a Study
Although we scored >2 million papers across a range of fields,
it is difficult to assess whether a particular score has any
relevance to the ability of others to replicate a study. Using
work done by the Center for Open Science’s Reproducibility
Project: Cancer Biology [6], we were able to look at the scores
of all papers originally in their study (RTI 3.40, SD 0.95), which
researchers used to attempt to replicate the experiments.
According to Errington et al [6], none of the original manuscripts
contained sufficient detail to attempt to replicate the study, and
all required additional information from the authors. To begin
replication attempts, Errington et al [6] had to email the original
authors and were only able to replicate studies when the original
authors responded with additional details. This process is
unreliable and slow and results in the loss of a few experiments,
as some authors did not respond. Following this, Errington et
al [6] generated registered reports, documenting each protocol
in a step-by-step manner. After the review, replication reports
containing in-depth descriptions of their methods and results
were published. These reports were intentionally as rigorous
and transparent as possible, sharing all data and codes openly,
following resource-specific best practices, and ensuring that all
reagents were listed as transparently as possible. As a result,
they scored significantly higher (RTI 7.61, SD 0.78) than their
originating manuscripts (Figure 9). We assume that these
replication papers, where authors paid as much attention to
methodological detail as possible, are much more likely to be
replicable without additional correspondence. Although we
cannot simply describe all 2 papers as not replicable and all 8
papers as replicable, as numerous fields and their subsequent
best practices exist, we can state that higher scores are associated
with more methodological detail and as such are likely easier
to replicate. We encourage biomedicine authors to aim for high
scores by ensuring that their methods sections include as much
detail as possible.
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number of sentences containing positive and negative examples as well as some sentences without any entities used in both
training and testing.
[DOCX File , 25 KB-Multimedia Appendix 2]

Multimedia Appendix 3
JSON file containing regular expression patterns used for protocol, data, and code identifiers.
[TXT File , 8 KB-Multimedia Appendix 3]

Multimedia Appendix 4
Data underlying figures.
[XLSX File (Microsoft Excel File), 442 KB-Multimedia Appendix 4]

Multimedia Appendix 5
Rigor and Transparency Index.
[XLSX File (Microsoft Excel File), 25249 KB-Multimedia Appendix 5]

Multimedia Appendix 6
A graphic with coloring scaled to a country’s Rigor and Transparency Index shown over the last 10 years (2010-2020) for countries
with 100 or more papers. Blue shows relatively high averages. Yellow shows relatively low averages.
[MP4 File (MP4 Video), 209 KB-Multimedia Appendix 6]
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