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Abstract Antibodies are critical reagents to detect and characterize proteins. It is commonly 
understood that many commercial antibodies do not recognize their intended targets, but informa-
tion on the scope of the problem remains largely anecdotal, and as such, feasibility of the goal of 
at least one potent and specific antibody targeting each protein in a proteome cannot be assessed. 
Focusing on antibodies for human proteins, we have scaled a standardized characterization 
approach using parental and knockout cell lines (Laflamme et al., 2019) to assess the performance 
of 614 commercial antibodies for 65 neuroscience- related proteins. Side- by- side comparisons of all 
antibodies against each target, obtained from multiple commercial partners, have demonstrated 
that: (i) more than 50% of all antibodies failed in one or more applications, (ii) yet, ~50–75% of 
the protein set was covered by at least one high- performing antibody, depending on application, 
suggesting that coverage of human proteins by commercial antibodies is significant; and (iii) recom-
binant antibodies performed better than monoclonal or polyclonal antibodies. The hundreds of 
underperforming antibodies identified in this study were found to have been used in a large number 
of published articles, which should raise alarm. Encouragingly, more than half of the underper-
forming commercial antibodies were reassessed by the manufacturers, and many had alterations to 
their recommended usage or were removed from the market. This first study helps demonstrate the 
scale of the antibody specificity problem but also suggests an efficient strategy toward achieving 
coverage of the human proteome; mine the existing commercial antibody repertoire, and use the 
data to focus new renewable antibody generation efforts.

eLife assessment
Antibodies are some of the most important tools in biomedical research. However, their quality 
and specificity vary significantly. This fundamental study provides important guidelines for how 
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the quality of an antibody should be assessed and recorded and provides compelling data on 
the selected antibodies. This paper will be of interest to researchers working in experimental cell 
biology.

Introduction
Antibodies are critical reagents used in a range of applications, enabling the identification, quanti-
fication, and localization of proteins studied in biomedical and clinical research. The research enter-
prise spends significantly on the ~1.6 M commercially available antibodies targeting ~96% of human 
proteins (Bandrowski et  al., 2023). Unfortunately, a significant percentage of these antibodies 
do not recognize the intended protein or recognize the protein but also recognize non- intended 
targets, with estimates that $0.375 to $1.75 billion is wasted yearly on non- specific antibodies (Baker, 
2015; Bradbury and Plückthun, 2015; Voskuil et al., 2020). Perhaps worse, the use of poor- quality 
antibodies is a major factor in the scientific reproducibility crisis (Bradbury and Plückthun, 2015; 
Voskuil et  al., 2020; Baker, 2020). With tens to hundreds of antibodies available for any given 
protein target, it is difficult for antibody users to select the best performing antibody (Voskuil, 2014), 
and a growing number of cases reveal that depending on previously published antibodies is not a 
reliable method to assess their performance (Laflamme et al., 2019; Sato et al., 2021; Li et al., 
2023; Sicherre et al., 2021; Haytural et al., 2019; Virk et al., 2019). Academic and industry scien-
tists aspire to have at least one, and ideally more, potent, selective and renewable antibody for each 
human protein for each of the most common applications (Marx, 2020). Unfortunately, there is no 
agreed- upon mechanism to determine, validate or compare antibody performance and there are 
multiple strategies for antibody validation (Uhlen et al., 2016), with unequal scientific value. Most 
information on how commercial antibodies perform is anecdotal. It is thus difficult to assess progress 
toward the objective of well- validated antibodies for each human protein, or to design a strategy to 
accomplish this aim.

We sought to address this issue by developing optimized protocols to assess antibody specificity 
in the three most common uses of antibodies in biomedical research laboratories; Western blot (WB), 
immunoprecipitation (IP), and immunofluorescence (IF). We used these protocols to test antibodies 
against a variety of neuroscience targets, chosen by funders, to predict requirements for the larger 
goal of coverage of an entire mammalian proteome. The optimal antibody testing methodology is 
largely settled; using an appropriately selected wild type cell and an isogenic CRISPR knockout (KO) 
version of the same cell as the basis for testing, yields rigorous and broadly applicable results (this 
study, as well as Laflamme et al., 2019; Ellis et al., 2023; Davies et al., 2013). However, the cost 
of antibody characterization using engineered KO cells is higher than that of other methods, mainly 
because of the cost of custom edited cells. Commercial antibody suppliers support a large and diverse 
catalogue of products, with most antibody products generating <$5000 in total sales, far less than 
the costs of KO- based validation, estimated at $25,000. While leading companies are increasingly 
assessing antibody performance, it is exceedingly difficult, and cost restrained, to properly charac-
terize all their products. Even when available, high- performing antibodies may remain hidden within 
the millions of reagents of unknown quality.

To begin the process of large- scale antibody validation and to provide a large enough dataset to 
allow for more accurate estimates of the work and financing required to complete such a project, we 
began with the human proteome. We created a partnership of academics, funders, and commercial 
antibody manufacturers, including 10 companies representing approximately 27% of antibody manu-
facturing worldwide. For each protein target, we tested commercial antibodies, provided from various 
manufacturers, in parallel using standardized protocols, agreed upon by all parties, in WB, IP, and IF 
applications. All data are shared rapidly and openly on ZENODO, a preprint server. We have tested 
614 commercially available antibodies targeting 65 proteins, and found that approximately two thirds 
of this protein set was covered by at least one high- performing antibody, and half was covered by at 
least one high- performing renewable antibody, suggesting that coverage of human proteins by high- 
performing antibodies is significant. This sample is large enough to observe several trends in antibody 
performance across various parameters and estimate the scale of the antibody liability crisis.

https://doi.org/10.7554/eLife.91645
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Results
Assembling KO cell lines and antibodies
Our initiative has thus far validated antibodies for 65 protein targets, which were chosen by disease 
charities, academia, and industry without consideration of antibody coverage. The list is comprises 32 
Alzheimer’s disease (AD)- related proteins that were community- nominated through an NIH- funded 
project on dark AD genes (https://agora.adknowledgeportal.org/), 22 proteins nominated within the 
amyotrophic lateral sclerosis (ALS) Reproducible Antibody Platform project, 5 Parkinson’s disease (PD)- 
linked proteins nominated by the Michael J. Fox Foundation, and 6 proteins nominated by industry 
(Figure 1A). Within the 65 target proteins, 56 are predicted intracellular and 9 are predicted secreted. 
The description of each protein target is indicated in Figure 1—source data 1.

The proteins were searched to determine the Uniprot identifier, the predicted molecular mass, and 
whether the protein is secreted or intracellular (Figure 1B). Our strategy was predicated on identifying 
a parental cell line that expressed sufficient levels of the target protein to be detected by an antibody 
with a binding affinity of 1–50 nM. To identify candidate lines, we searched the Cancer Dependency 
Map Portal (DepMap) using the ‘Expression 22Q1’ database, which houses the RNA- level analysis 
of >1800 cancer cell lines (Ghandi et al., 2019; Figure 1B). After our initial experience with a few 
dozen targets comparing RNA expression and the ability to detect a clear signal, we selected 2.5 
log2(TPM +1) as an RNA- level threshold to select a candidate cell line to create a KO. Among the cell 
lines showing expression above this level, we prioritized a group of 8 common cell line backgrounds 

eLife digest Commercially produced antibodies are essential research tools. Investigators at 
universities and pharmaceutical companies use them to study human proteins, which carry out all the 
functions of the cells. Scientists usually buy antibodies from commercial manufacturers who produce 
more than 6 million antibody products altogether. Yet many commercial antibodies do not work as 
advertised. They do not recognize their intended protein target or may flag untargeted proteins. Both 
can skew research results and make it challenging to reproduce scientific studies, which is vital to 
scientific integrity. Using ineffective commercial antibodies likely wastes $1 billion in research funding 
each year.

Large- scale validation of commercial antibodies by an independent third party could reduce the 
waste and misinformation associated with using ineffective commercial antibodies. Previous research 
testing an antibody validation pipeline showed that a commercial antibody widely used in studies 
to detect a protein involved in amyotrophic lateral sclerosis did not work. Meanwhile, the best- 
performing commercial antibodies were not used in research. Testing commercial antibodies and 
making the resulting data available would help scientists identify the best study tools and improve 
research reliability.

Ayoubi et al. collaborated with antibody manufacturers and organizations that produce genetic 
knock- out cell lines to develop a system validating the effectiveness of commercial antibodies. In the 
experiments, Ayoubi et al. tested 614 commercial antibodies intended to detect 65 proteins involved 
in neurologic diseases. An effective antibody was available for about two thirds of the 65 proteins. Yet, 
hundreds of the antibodies, including many used widely in studies, were ineffective. Manufacturers 
removed some underperforming antibodies from the market or altered their recommended uses 
based on these data. Ayoubi et al. shared the resulting data on Zenodo, a publicly available preprint 
database. The experiments suggest that 20- 30% of protein studies use ineffective antibodies, indi-
cating a substantial need for independent assessment of commercial antibodies.

Ayoubi et al. demonstrated their side- by- side antibody comparison methods were an effective and 
efficient way of validating commercial antibodies. Using this approach to test commercial antibodies 
against all human proteins would cost about $50 million. But it could save much of the $1 billion 
wasted each year on research involving ineffective antibodies. Independent validation of commercial 
antibodies could also reduce wasted efforts by scientists using ineffective antibodies and improve the 
reliability of research results. It would also enable faster, more reliable research that may help scien-
tists understand diseases and develop new therapies to improve patient’s lives.

https://doi.org/10.7554/eLife.91645
https://agora.adknowledgeportal.org/
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Figure 1. Antibody characterization platform. (A) The funders of the targets analyzed in this study and the number of targets proposed by each are 
indicated. (B) Bioinformatic analyses of nominated proteins using Uniprot to determine their molecular mass, unique Uniprot ID and published/expected 
subcellular distribution. In parallel, analyses of the Cancer Dependency Map (‘DepMap’) portal provided RNA sequencing data for the designated 
target, which guided our selection of cell lines with adequate expression for the generation of custom KO cell lines. A subset of cell lines amenable for 
genome engineering were prioritized. (C) Receive relevant KO cell lines or generate custom KO lines and (D) receive antibodies from manufacturing 
partners. All contributed antibodies were tested in parallel by (E) WB using WT and KO cell lysates ran side- by- side, (F) IP followed by WB using a KO- 

Figure 1 continued on next page

https://doi.org/10.7554/eLife.91645
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representing different cell/tissue types because their doubling time is short, and they are amenable 
to CRISPR- Cas9 technology (Figure 1B). These 8 cell lines were used in 62 out of the 65 antibody 
characterization studies (Figure 1—source data 1).

After identifying candidate cell lines for each target, we either obtained KO lines from our industry 
consortium partners or generated them in- house (Figure 1C). Antibodies were provided from anti-
body manufacturers, who were responsible for selecting antibodies to be tested from their respective 
catalogs (Figure  1D). Most antibody manufacturers prioritized renewable antibodies. The highest 
priority was given to recombinant antibodies as they represent the ultimate renewable reagent (Marx, 
2020) and have advantages in terms of adaptability, such as switching IgG subclass (Andrews et al., 
2019) or using molecular engineering to achieve higher affinity binding than B- cell generated anti-
bodies (Gray et al., 2020).

All available antibodies from all companies were tested side- by- side in parental and KO lines. The 
protocols used were established by our previous work (Laflamme et al., 2019) and refined in collab-
oration with antibody manufacturers. On occasion, our protocols differed from those the companies 
used in their internal characterization. All antibodies were tested for all three applications (except that 
secreted proteins were not tested in IF), independent of the antibody manufacturers’ recommenda-
tions. We received on average 9.5 antibodies per protein target contributed from an average of five 
different antibody manufacturers (Figure 1E, F and G). Companies often contributed more than one 
antibody per target (Figure 1—source data 1).

Antibody and cell line characterization
For WB, antibodies were tested on cell lysates for intracellular proteins or cell media for secreted 
proteins (Figure 1E). For 55/65 of the target proteins, we identified one or more antibodies that 
successfully immunodetected their cognate protein, identifying well- performing antibodies and 
validating the efficacy of the KO lines. For the remaining nine targets, we identified at least one 
specific, non- selective antibody that detects the cognate protein by WB, but also recognizes unre-
lated proteins, that is, non- specific bands not lost in the KO controls. All 614 antibodies were tested 
by IP on non- denaturing cell lysates for intracellular proteins or cell media for secreted proteins, using 
WB with a successful antibody from the previous step to evaluate the immunocapture (Figure 1F). 
All antibodies against intracellular proteins were tested for IF using a strategy that imaged a mosaic 
of parental and KO cells in the same visual field to reduce imaging and analysis biases (Figure 1G).

For each protein target, we consolidated all screening data into a report, which is made available 
without restriction on ZENODO, a data- sharing website operated by CERN. On ZENODO, all 65 
reports are gathered under the Antibody Characterization through Open Science (YCharOS) commu-
nity: https://ZENODO.org/communities/ycharos/ (Figure 1I). Prior to release, each antibody charac-
terization report underwent technical peer review by a group of scientific advisors from academia and 
industry (Figure 1H).

Coverage of human proteins by renewable antibodies
The Antibody Registry (https://www.antibodyregistry.org, RRID:SCR_006397) indicates that there 
are ~1.6 million antibodies covering ~96% of human proteins (Bandrowski et al., 2023), with 53% 
covered by at least five renewable antibodies (Figure 2A, Figure 2—source data 1). Approximately 
21% of human proteins are covered by only one or two renewable antibodies, and ~15% have no 
renewable antibodies available (Figure 2A). In our set of 65 proteins, and from the manufacturers 

validated antibody identified in (E) and by (G) IF using a mosaic strategy to avoid imaging and analysis biases. (H) Antibody characterization data for all 
tested antibodies were presented in a form of a protein target report. All reports were shared with participating companies for their review. (I) Reviewed 
reports were published on ZENODO, an open access repository. ALS- RAP=amyotrophic lateral sclerosis- reproducible antibody platform, AD = 
Alzheimer’s disease, MJFF = Michael J. Fox Foundation. KO = knockout cell line.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Description of the 65 nominated target proteins.

Figure supplement 1. Schematic representations of antibody performance.

Figure 1 continued

https://doi.org/10.7554/eLife.91645
https://ZENODO.org/communities/ycharos/
https://www.antibodyregistry.org
https://identifiers.org/RRID/RRID:SCR_006397
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represented, 49 were covered by at least 3 renewable antibodies, 15 by 1 or 2 renewable antibodies, 
and 1 was not covered by any renewables (Figure 1—source data 1).

We found a well- performing renewable antibody for 50 targets in WB (Figure 2B, left bar graph), 
for 49 targets in IP (Figure  2B, middle bar graph), and for 30 targets in IF (Figure  2B, right bar 
graph). For some proteins lacking coverage by renewable antibodies or lacking successful renewable 
antibodies, well- performing polyclonal antibodies were identified (Figure 2B). Some proteins were 
not covered by any successful antibodies depending on application; notably ~40% of our protein set 
lacked a successful antibody for IF (Figure 2B, right bar graph).

Figure 2. Analysis of human protein coverage by antibodies. (A) Cumulative plot showing the percentage of the human proteome that is covered 
by polyclonal antibodies (blue line) and renewable antibodies (monoclonal +recombinant; orange line). The number of antibodies per protein was 
extracted from the Antibody Registry database. (B) Percentage of target proteins covered by minimally one renewable successful antibody (orange 
column) or covered by only successful polyclonal antibodies (blue column) is shown for each indicated applications using a bar graph. Lack of successful 
antibody (‘none’) is also shown (black column).

The online version of this article includes the following source data for figure 2:

Source data 1. Number of antibodies per human protein.

https://doi.org/10.7554/eLife.91645
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Recombinant antibody performance
The antibody set constituted 258 polyclonal antibodies, 165 monoclonal antibodies and 191 recom-
binants. For WB, 27% of the polyclonal antibodies, 41% of the monoclonal antibodies and 67% of the 
recombinant antibodies immunodetected their target protein (Figure 3, left bar graph). For IP, trends 
were similar: 39%, 32% and 54% of polyclonal, monoclonal and recombinants, respectively (Figure 3, 
middle bar graph). For IF, we tested 529 antibodies against the set of intracellular proteins; 22% of 
polyclonal antibodies, 31% of monoclonal antibodies, and 48% of recombinant antibodies generated 
selective fluorescence signals in images of parental versus KO cells (Figure 3, right bar graph). Thus, 
recombinant antibodies are on average better performers than polyclonal or monoclonal antibodies in 
each of the applications. It should be noted that recombinant antibodies are newer protein reagents 
compared to polyclonal and monoclonal hybridomas, and their superior performance could be a 
consequence of enhanced internal characterization by the commercial suppliers.

Our analyses also inform the characterization pipelines to use for newly generated renewable anti-
bodies. Currently, it is common to use WB as the initial screen (Lund- Johansen and Browning, 2017). 
However, we find that success in IF is the best predictor of performance in WB and IP (Figure 3—
figure supplement 1).

Optimizing an antibody characterization strategy
While the parental versus KO method is the consensus superior method for antibody validation 
(Laflamme et al., 2019; Ellis et al., 2023; Davies et al., 2013; Lutz et al., 2022), not all antibodies on 
the market are characterized this way, largely due to cost and the range of alternative methods (Uhlen 
et al., 2016). To assess if the cost of KO characterization is justified, we compared the performance of 
antibodies in our dataset to the performance predicted by the characterization methods used by the 
companies. In all, 578 of the 614 antibodies tested were recommended for WB by the manufacturers. 
Of these, 44% were successful, 35% were specific but non- selective, and 21% failed (Figure 4—figure 
supplement 1, left bar graph). Most antibodies are not recommended for IP by the suppliers, perhaps 
because they are not tested. Of 614 antibodies, 143 were recommended for IP, and 58% enriched 
their cognate target from cell extracts. Interestingly, of the 471 remaining antibodies that had no 
recommendation for IP, 37% were able to enrich their cognate antigen (Figure 4—figure supple-
ment 1, middle bar graph). In this regard, the manufacturers are not sufficiently recommending their 

Figure 3. Analysis of antibody performance by antibody types. The percentage of successful antibodies based on their clonality is shown using a bar 
graph, for each indicated application. The number of antibodies represented in each category is indicated above the corresponding bar.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Correlation of antibody performance between applications.

https://doi.org/10.7554/eLife.91645
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successful products. Of the 529 antibodies tested in IF, 293 were recommended for this application 
by the suppliers and 236 were not. Only 39% of the antibodies recommended for IF were successful 
(Figure 4—figure supplement 1, right bar graph).

We next investigated if antibody validation strategies have equal scientific value. Broadly, anti-
bodies are characterized using genetic approaches, which exploit KO or knockdown (KD) samples as 
controls, or using orthogonal approaches, which rely on known information about the target protein 
of interest as a correlate to validate performance. For WB, 61% of antibodies were recommended by 
manufacturers based on orthogonal approaches, 30% based on genetic approaches and 9% using 
other strategies. For IF, 83% of the antibodies were recommended based on orthogonal approaches, 
7% using genetic approaches and 10% using other strategies (Figure 4A). For WB, 80% of the anti-
bodies recommended by the manufacturers based on orthogonal strategies and 89% of antibodies 
recommended based on genetic strategies could detect the intended target protein (Figure 4B, left 
bar graph). For IF, 38% of the antibodies recommended by the manufacturers based on orthogonal 
strategies were confirmed using KO cells as controls. Of the 20 antibodies validated by the manufac-
turers for IF on the basis of genetic strategies, we confirmed the performance of 16 (80%) (Figure 4B, 
histogram right). Of the four antibodies that failed in our hand, one has already been withdrawn from 
the market by the manufacturer. Thus, while orthogonal strategies are somewhat suitable for WB, 
genetic strategies generate far more robust characterization data for IF.

From a total of 409 antibodies that presented conflicting data between our characterization data 
and antibody supplier’s recommendations, the participating companies have withdrawn 73 antibodies 
from the market and changed recommendations for 153 antibodies (Figure 4—figure supplement 
2). In turn, high- quality antibodies are being promoted. We expect to see additional changes and an 
overall improvement in the general quality of commercial reagents as more antibody characterization 
reports are generated.

Antibodies and reproducible science
The availability of renewable, well- characterized antibodies would be expected to enhance the 
reproducibility of research. To assess the bibliometric impact of underperforming antibodies, we 
used the reagent search engine CiteAb (https://www.citeab.com/) to quantify how antibodies in our 
dataset have been used in the literature. We identified 2010 publications that employed one of the 
180 antibodies we tested for WB. Of those, 69% used a well- performing antibody that specifically 
immunodetected its target protein by WB, while 31% used an antibody unsuccessful in our protocol 
(Figure 4C). For IP, 105 publications employed 41 of our tested antibodies while 65% of these used a 
well- performing antibody but 35% employed an antibody unable to immunocapture its target protein 
(Figure 4C). For IF, we found 548 publications that employed 80 of the antibodies we tested. Of these 
publications, 22% used an antibody unable to immunolocalize its target protein (Figure 4C), with 88% 
containing no validation data (Figure 4D). If our results are representative, this suggests that 20–30% 
of figures in the literature are generated using antibodies that do not recognize their intended target, 
and that more effort in antibody characterization is highly justified.

A Research Resource Identification (RRID) was assigned to each of the 614 antibodies tested, indi-
cated in each of the 65 antibody characterization reports available on ZENODO (Figure 5, bottom 
right image). Antibody characterization data generated by this organization are being disseminated 
by the RRID community and are directly connected through the Antibody Registry, or the RRID Portal 
(Figure  5, bottom left image) and participating antibody manufacturers’ websites (Figure  5, top 
image).

Discussion
Here, we present the analysis of a dataset of commercial antibodies as an assessment of the problem 
of antibody performance, and as a step toward a comprehensive and standardized ecosystem to 
validate commercial antibodies. We evaluated 614 antibodies against 65 human proteins side- by- 
side in WB, IP, and IF. All raw data are openly available (https://ZENODO.org/communities/ycharos/), 
identifiable on the RRID portal and on participating antibody manufacturers’ websites. Our studies 
provide an unbiased and scalable analytical framework for the representation and comparison of 
antibody performance, an estimate of the coverage of human proteins with renewable antibodies, an 

https://doi.org/10.7554/eLife.91645
https://www.citeab.com/
https://ZENODO.org/communities/ycharos/
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Figure 4. Scientific value of antibody characterization methods and research usage. (A) Percentage of antibodies validated by suppliers using one of 
the indicated methods for WB or IF showed using a bar graph with stacked columns. The percentage corresponding to each section of the bar graph 
is shown directly in the bar graph. Orthogonal = orthogonal strategies, genetic = genetic strategies. (B) Percentage of successful (light gray), specific, 
non- selective (dark gray- only for WB) and unsuccessful (black) antibodies according to the validation method used by the manufacturer for WB and IF 
as compared to the KO strategy used in this study. Data are shown using a bar graph with stacked columns. The percentage corresponding to each 
section of the bar graph is shown directly in the bar graph. The number of antibodies analyzed corresponding to each condition is shown above each 
bar. (C) Percentage of publications that used antibodies that successfully passed validation (correct usage) or to antibodies that were unsuccessful 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.91645
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assessment of the scientific value of common antibody characterization methods, and they inform a 
strategy to identify renewable antibodies for all human proteins.

Our approach, developed in collaboration with manufacturers, and intended to be applied to 
entire proteomes, uses universal protocols for all tested antibodies in each application. Scientists use 
variants of such protocols, optimized for their protein of interest, which can have a major impact on 
antibody performance (Pillai- Kastoori et al., 2020; Piña et al., 2022; Marcon et al., 2015). Never-
theless, the process robustly identifies antibodies that fail to recognize their intended target, which 
becomes evident when other antibodies tested in parallel perform well. At a minimum, removal of 
these poorly performing products from the market will have significant impact in that hundreds of 
published papers report the use of such antibodies.

The impacts of poorly performing antibodies are well documented (Voskuil et  al., 2020; Sato 
et al., 2021; Aponte Santiago et al., 2023; Freedman et al., 2016); our analyses provide insight 

in validation (incorrect usage) showed using a bar graph with stacked columns. The number of publications was found by searching CiteAb. The 
percentage corresponding to each section of the bar graph is shown in the bar graph and the number of publications represented in each category 
is shown above the corresponding bar. (D) Percentage of publications that used an unsuccessful antibody for IF from (C) that provided validation 
data for the corresponding antibodies. Data is shown as a bar graph. The number of publications represented in each category is shown above the 
corresponding bar.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Analysis of antibody performance by manufacturer’s catalogue recommendation.

Figure supplement 2. Actions taken from participating companies.

Figure 4 continued

Figure 5. Accessing antibody characterization data using RRIDs. An antibody RRID can be used to search characterization studies across various 
databases, such as the vendor page, the Antibody Registry and on the YCharOS community page on ZENODO. AB_2037651 is given as an example.

https://doi.org/10.7554/eLife.91645
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into the magnitude of the problem. In our set of 65 proteins, we found that an average of ~12 papers 
per protein included use of an antibody that failed to recognize the intended protein target using 
our protocols. Scientists are not entirely to blame; dozens of antibodies can be used in a single study, 
often unrelated to the authors’ protein of interest. Genetic validation of every antibody used in a 
study remains a difficult, if not impossible task. In addition, even with our optimized protocol, the cost 
of characterizing antibodies for a single protein is estimated at ~$25,000 USD. And if each investi-
gator performs such an analysis, there will be multiple overlapping validation of any given antibody. 
We estimate a cost of $50 million USD to characterize antibodies against all proteins in a proteome, 
considering parallelization and industrialization of the procedure. The costs mentioned exclude the 
expenses of antibodies and knockout cell lines. However, it should be noted that this estimated cost 
for validation is far below the predicted waste on bad antibodies, currently estimated at ~$1B/year 
(Voskuil et  al., 2020). Thus, independent antibody characterization with openly published data, 
funded by various global organizations, is an important, if not essential, initiative that is certain to 
save large amounts of money and increase the quality and reproducibility of the literature. This study 
demonstrates the feasibility of such an initiative.

Life scientists tend to focus on a small subset of human proteins, leading to an imbalance between 
a small percentage of well- studied proteins, and a higher percentage of poorly characterized proteins 
(Carter et al., 2019). Our set of 65 funder- designated proteins is an unbiased sample, representative 
of the heterogeneity of knowledge of the human proteome; a search of the NIH protein database 
revealed that 15 proteins (23% of our protein sample) are well studied with more than 500 publica-
tions and 50 proteins (77% of our protein sample) have corresponding publications ranging from 37 
to 498 (Figure 1—source data 1). Although we observed that there are more commercial antibodies 
available for the best- studied proteins (Figure 1—source data 1), an encouraging result of our work 
is that more than half of our protein targets are covered by well- performing, renewable antibodies 
for WB, IP and IF - including both well characterized and more poorly studied proteins. Within the 
antibodies we tested, we found a successful renewable antibody for WB for 77% of proteins (50/65), 
for IP for 75% of proteins (49/65) and for IF for 54% of proteins (30/56) examined. Extrapolation of our 
findings to the human proteome would suggest that it might be possible to identify well- performing 
renewable reagents for half the human proteome, including poorly characterized proteins, simply by 
mining commercial collections. Indeed, it is likely that the coverage is greater because our corporate 
partners only represent 27% of the antibody production worldwide.

The research market is heavily dominated by polyclonal antibodies, and their use contributes 
to reproducibility issues in biomedical research (Baker, 2015; Baker, 2020) and present important 
ethical concerns. From a scientific perspective, polyclonal antibodies suffer from batch- to- batch vari-
ation and are thus in conflict with the scientific community desire to use and provide only renewable 
reagents. From an ethical perspective, the generation of polyclonal antibodies requires large numbers 
of animals yearly (Gray et al., 2016). While recombinant antibodies may rely on the use of animals 
for the initiation of an antibody generation program, animal- free in vitro molecular strategies are 
also used for production, and to generate new batches of these antibodies (Gray et al., 2020). As of 
today, the uptake of recombinant antibodies by the scientific community has not been satisfactory. For 
example, while leading antibody manufacturers are converting top- cited polyclonal antibodies into 
recombinant antibodies and removing underperforming antibodies from their catalogues, polyclonals 
remain the most purchased. This situation has also been acknowledged by the EU Reference Labora-
tory for Alternatives to Animal Testing and a lack of understanding in the use of recombinant methods 
has been suggested by authors of a recent correspondence to the editors of Nature Biotechnology 
(Gray et al., 2020). One reason for this confusion could be the absence of large- scale performance 
data comparing the various antibody generation technologies. In our dataset, recombinant antibodies 
performed well in all applications tested, arguing there is no reason not to adopt the recombinant 
technology. Moreover, our study strongly supports the idea that future antibody generation programs 
should focus on recombinant technologies.

Our analysis of antibody performance indicates that success in IF is an excellent predictor of perfor-
mance in WB and IP. Given that it is difficult to imagine a characterization pipeline dependent on 
IF, we suggest that using KO (or knockdown in the case of an essential gene) strategies to screen 
antibodies for the intended application will provide the most effective approach to identify selective 
antibodies. Currently, one of the main barriers to large- scale production of high- quality antibodies 

https://doi.org/10.7554/eLife.91645
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is the lack of availability of KO lines derived from cells that express detectable levels of each human 
protein. Creation of a broadly accessible biobank of bespoke KO cells for each human gene should 
be a priority for the community.

Our studies are rapidly shared via the open platform ZENODO, and selected studies were published 
on the F1000 publication platform (https://f1000research.com/ycharos). This data generation and 
dissemination is intended to benefit the global life science community, but its impact depends on the 
real- world uptake of the data. In addition, we recognize that antibodies are used in other protocols 
or in variations of our protocols that may yield important new or different outcomes. Posting of such 
information from users worldwide on open platforms will allow continued improvements to the data. 
Thus, we have partnered with the RRID Portal Community to improve our dissemination strategies. 
The Antibody Registry is a comprehensive repository of over 2.5 million commercial antibodies that 
have been assigned with RRIDs to ensure proper reagent identification (Bandrowski et al., 2023). 
Our data can be searched in the AntibodyRegistry.org and other portals that display this data such 
as the  RRID. site portal and dkNet.org. The search term ‘ycharos’ will return all the currently available 
antibodies that have been characterized and searching for the target or the catalogue number of the 
antibody in any of these portals will also bring back the YCharOs information. In the  RRID. site portal 
and dkNet there will also be a green star, tagging the antibodies to further highlight the contribution 
of YCharOS. The project is also being promoted through large international bioimaging networks 
including Canada BioImaging (CBI - https://www.canadabioimaging.org/), BioImaging North America 
(BINA - https://www.bioimagingnorthamerica.org/) and Global BioImaging (GBI - https://globalbio-
imaging.org/).

Overall, this project provides the global life sciences community with a tremendous resource for 
the study of human proteins and will result in significant improvements in rigour and reproducibility in 
antibody- based assays and scientific discovery.

Materials and methods
Data analysis
Performance of each antibody was retrieved from the corresponding ZENODO report or publica-
tion (Figure 1—source data 1), for WB, IP and IF, and analyzed following the performance criteria 
described in Table 1. Antibody properties, application recommendations and antibody characteriza-
tion strategies were taken from the manufacturers' datasheets. Throughout the manuscript, renew-
able antibodies refer to monoclonal antibodies from hybridomas and to recombinant antibodies 
(monoclonal and polyclonal recombinant antibodies) generated in vitro.

For Figure 2A, the analysis of the antibody coverage of human proteins was performed as previ-
ously described (Bandrowski et al., 2023) and antibodies were divided into polyclonal and renewable 
categories.

To evaluate the number of citations corresponding to each tested antibody (Figure  4C), we 
searched CiteAb (between November 2022 and March 2023) and used the provided analysis of cita-
tions per application. We then searched for publications mentioning the use of a poorly performing 
antibody for IF. Publications were filtered by application (ICC, ICC- IF, and IF) and reactivity (Homo 

Table 1. Antibody performance criteria.

Definition

Successful antibody for western blot

A successful primary antibody immunodetects the target protein, and the signal observed in the WT lysate is lost 
in the KO lysates (Figure 1—figure supplement 1A). The antibody does not recognize other proteins under the 
conditions tested.

Specific, non- selective antibody for 
western blot

The primary antibody specifically recognizes the target protein, but also unrelated protein(s) (Figure 1—figure 
supplement 1A).

Successful antibody for 
immunoprecipitation

Under the conditions used, a successful primary antibody immunocaptures the target protein to at least 10% of 
the starting material (Figure 1—figure supplement 1B).

Successful antibody for 
immunofluorescence

A successful primary antibody immunolocalizes the target protein by generating a fluorescence signal in WT cells 
that is at least 1.5- fold higher than the signal in KO cells (Figure 1—figure supplement 1C). Signal provided by 
such antibody staining can be easily distinguished from unspecific background and noise.

https://doi.org/10.7554/eLife.91645
https://f1000research.com/ycharos
https://antibodyregistry.org/
https://dknet.org/
https://www.canadabioimaging.org/
https://www.bioimagingnorthamerica.org/
https://globalbioimaging.org/
https://globalbioimaging.org/
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sapiens) on CiteAb (on July 2023), each publication being manually checked to confirm antibody 
and technique. This resulted in 112 publications, which were then assessed for characterization data 
(Figure 4D).

We asked participating antibody suppliers to indicate the number of antibodies eliminated from 
the market, and the number of antibodies for which there was a change in recommendation due to 
their evaluation of our characterization data (Figure 4—figure supplement 2).

The correlation of antibody performance between two applications were evaluated by the 
McNemar test, followed by the chi- square statistic (Figure 3—figure supplement 1). The number 
of antibodies was reported in each corresponding cell of the 2x2 contingency tables, and chi- square 
statistic was computed as follows:  X2 =

(
b − c

)
2/b + c . The null hypothesis is pb = pc (where p is the 

population proportion). Note that these hypotheses relate only for the cells that assess change in 
status, that is cell b which contains the number of antibodies which passed application #2, but failed 
application #1, whereas cell c contains the number of antibodies which passed application #1, but 
failed application #2. The test measures the effectiveness of antibodies for one application (from fail 
to pass) against the other application (change from pass to fail). If pb = pc, the performance of one 
application is not correlated with the performance of another application, whereas if pb <or > pC, then 
antibody performance from one application can inform on the performance of the other application. 
The computed value is compared to the chi- square probability table to identify the p- value (degree 
of freedom is 1). The percentage of antibodies indicated in the double y- axis graph was computed by 
dividing the number of antibodies in the corresponding cell to the total number of antibodies (sum 
of cell a, b, c and d).

The number of articles corresponding to each human target protein was assessed by searching the 
NIH protein database (https://www.ncbi.nlm.nih.gov/protein/) on May 4, 2023.

Resource information (alphabetical order)

Name of the resource RRID Website

Antibody Registry RRID:SCR_006397 https://antibodyregistry.org

Cancer Dependency Map Portal (DepMap) RRID:SCR_017655 https://depmap.org/portal/

CiteAb RRID:SCR_009653 https://www.citeab.com

F1000research (YCharOS Gateway) - https://f1000research.com/ycharos

NIH protein database - https://www.ncbi.nlm.nih.gov/protein/

Universal Protein Resource (Uniprot) RRID:SCR_002380 https://www.uniprot.org/

ZENODO (YCharOS community) - https://zenodo.org/communities/ycharos
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Data availability
All data generated and analysed during this study are included in the corresponding antibody charac-
terization reports openly available on the ZENODO open data repository (links to ZENODO reports 
are provided in Figure 1—source data 1).

The following datasets were generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Fotouhi M, Ryan J, 
Reintsch W, Worrall 
D, Ayoubi R, Durcan 
TM, Brown CM, 
McPherson PS, 
Laflamme C

2023 Antibody Characterization 
Report for Alsin

https:// doi. org/ 10. 
5281/ zenodo. 7671674

Zenodo, 10.5281/
zenodo.7671674

Ayoubi R, Fotouhi 
M, Ryan J, Worrall 
D, Reintsch W, 
Durcan TM, Brown 
CM, McPherson PS, 
Laflamme C

2023 Antibody Characterization 
Report for Amyloid- beta 
precursor protein

https:// doi. org/ 10. 
5281/ zenodo. 7971926

Zenodo, 10.5281/
zenodo.7971926

Ayoubi R, Worrall 
D, McPherson PS, 
Laflamme C

2023 Antibody Characterization 
Report for Angiogenin

https:// doi. org/ 10. 
5281/ zenodo. 7671286

Zenodo, 10.5281/
zenodo.7671286

Alshafie W, Ayoubi R, 
Nicouleau M, Durcan 
TM, McPherson PS, 
Laflamme C

2022 Antibody Characterization 
Report for Annexin A11

https:// doi. org/ 10. 
5281/ zenodo. 5903684

Zenodo, 10.5281/
zenodo.5903684

Ayoubi R, McPherson 
PS, Laflamme C

2022 Antibody Characterization 
Report for Apolipoprotein 
E

https:// doi. org/ 10. 
5281/ zenodo. 7249055

Zenodo, 10.5281/
zenodo.7249055

Alshafie W, Fotouhi 
M, Southern K, 
McPherson PS, 
Laflamme C

2021 Antibody Characterization 
Report for Ataxin- 2

https:// doi. org/ 10. 
5281/ zenodo. 5061824

Zenodo, 10.5281/
zenodo.5061824

Villegas L, Alshafie 
W, Fotouhi M, 
You Z, Durcan TM, 
McPherson PS, 
Laflamme C

2021 Antibody Characterization 
Report for Ataxin- 3

https:// doi. org/ 10. 
5281/ zenodo. 5574175

Zenodo, 10.5281/
zenodo.5574175

Ayoubi R, Alshafie W, 
Shapovalov I, Greer 
PA, McPherson PS, 
Laflamme C

2021 Antibody characterization 
report for Calpain- 2 
catalytic subunit

https:// doi. org/ 10. 
5281/ zenodo. 5259215

Zenodo, 10.5281/
zenodo.5259215

Ayoubi R, Alshafie 
W, McPherson PS, 
Laflamme C

2021 Antibody Characterization 
Report for CD44 antigen

https:// doi. org/ 10. 
5281/ zenodo. 4730966

Zenodo, 10.5281/
zenodo.4730966

Fotouhi M, Alshafie 
W, Shlaifer I, Ayoubi 
R, Durcan TM, 
McPherson PS, 
Laflamme C

2022 Antibody Characterization 
Report for Charged 
multivesicular body protein 
2b

https:// doi. org/ 10. 
5281/ zenodo. 6370501

Zenodo, 10.5281/
zenodo.6370501

Ayoubi R, Alshafie W, 
Straub I, McPherson 
PS, Laflamme C

2021 Antibody Characterization 
Report for Coiled- coil- helix- 
coiled- coil- helix domain- 
containing protein 10, 
mitochondrial (CHCHD10)

https:// doi. org/ 10. 
5281/ zenodo. 5259992

Zenodo, 10.5281/
zenodo.5259992
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Author(s) Year Dataset title Dataset URL Database and Identifier

Ayoubi R, Alshafie 
W, You Z, Durcan 
TM, McPherson PS, 
Laflamme C

2021 Antibody Characterization 
Report for Dynamin- 1

https:// doi. org/ 10. 
5281/ zenodo. 4724181

Zenodo, 10.5281/
zenodo.4724181

Ayoubi R, Alshafie 
W, McPherson PS, 
Laflamme C

2022 Antibody Characterization 
Report for E3 ubiquitin- 
protein ligase Itchy 
homolog (Itch)

https:// doi. org/ 10. 
5281/ zenodo. 6566970

Zenodo, 10.5281/
zenodo.6566970

Ayoubi R, Alshafie 
W, Dorval G, Durcan 
TM, McPherson PS, 
Laflamme C

2021 Antibody Characterization 
Report for E3 ubiquitin- 
protein ligase parkin 
(Parkin)

https:// doi. org/ 10. 
5281/ zenodo. 5747356

Zenodo, 10.5281/
zenodo.5747356

Ayoubi R, Fotouhi M, 
Ryan J, Reintsch W, 
Durcan TM, Brown 
CM, McPherson PS, 
Laflamme C

2022 Antibody Characterization 
Report for Endothelin- 
converting enzyme 1

https:// doi. org/ 10. 
5281/ zenodo. 7459248

Zenodo, 10.5281/
zenodo.7459248

Alshafie W, Ayoubi 
R, McPherson PS, 
Laflamme C

2021 Antibody Characterization 
Report for Equilibrative 
nucleoside transporter 1 
SLC29A1 (ENT1)

https:// doi. org/ 10. 
5281/ zenodo. 4733134

Zenodo, 10.5281/
zenodo.7324605

Fotouhi M, You 
Z, Durcan TM, 
McPherson PS, 
Laflamme C

2021 Antibody Characterization 
Report for Gelsolin

https:// doi. org/ 10. 
5281/ zenodo. 4724188

Zenodo, 10.5281/
zenodo.4724188

Ayoubi R, Alshafie 
W, Dekakra- Bellili 
L, McPherson PS, 
Laflamme C

2022 Antibody Characterization 
Report for Hamartin

https:// doi. org/ 10. 
5281/ zenodo. 6370607

Zenodo, 10.5281/
zenodo.6607513

Ayoubi R, Fotouhi M, 
Ryan J, Reintsch W, 
Gonzalez Bolivar S, 
Durcan TM, Brown 
CM, McPherson PS, 
Laflamme C

2023 Antibody Characterization 
Report for Leucine- rich 
repeat kinase 2 (LRRK2)

https:// doi. org/ 10. 
5281/ zenodo. 7971965

Zenodo, 10.5281/
zenodo.7987195

Ayoubi R, McPherson 
PS, Laflamme C

2022 Antibody Characterization 
Report for Macrophage 
colony- stimulating factor 1 
(CSF- 1)

https:// doi. org/ 10. 
5281/ zenodo. 6941512

Zenodo, 10.5281/
zenodo.6941512

Ayoubi R, Alshafie 
W, McPherson PS, 
Laflamme C

2021 Antibody Characterization 
Report for Matrin- 3

https:// doi. org/ 10. 
5281/ zenodo. 5644346

Zenodo, 10.5281/
zenodo.5644346

Ayoubi R, McPherson 
PS, Laflamme C

2021 Antibody Characterization 
Report for Midkine

https:// doi. org/ 10. 
5281/ zenodo. 5644321

Zenodo, 10.5281/
zenodo.5644321

Ayoubi R, Alshafie 
W, Dekakra- Bellili 
L, McPherson PS, 
Laflamme C

2022 Antibody Characterization 
Report for 
Mitogenactivated protein 
kinase 1 (MAPK1)

https:// doi. org/ 10. 
5281/ zenodo. 6941499

Zenodo, 10.5281/
zenodo.6941499

Alshafie W, Ayoubi 
R, Fotouhi M, 
McPherson PS, 
Laflamme C

2021 Antibody Characterization 
Report for Moesin

https:// doi. org/ 10. 
5281/ zenodo. 4724169

Zenodo, 10.5281/
zenodo.4627263

Ayoubi R, Alshafie 
W, McPherson PS, 
Laflamme C

2022 Antibody Characterization 
Report for NADH 
dehydrogenase 
[ubiquinone] iron- sulfur 
protein 2 (NDUFS2)

https:// doi. org/ 10. 
5281/ zenodo. 5903708

Zenodo, 10.5281/
zenodo.5903708
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https://doi.org/10.5281/zenodo.4724169
https://doi.org/10.5281/zenodo.4724169
https://doi.org/10.5281/zenodo.5903708
https://doi.org/10.5281/zenodo.5903708
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Author(s) Year Dataset title Dataset URL Database and Identifier

Ayoubi R, You 
Z, Durcan TM, 
McPherson PS, 
Laflamme C

2022 Antibody Characterization 
Report for Neurosecretory 
protein VGF

https:// doi. org/ 10. 
5281/ zenodo. 5903141

Zenodo, 10.5281/
zenodo.5903141

Ayoubi R, Fotouhi M, 
Ryan J, Reintsch W, 
Durcan TM, Brown 
CM, McPherson PS, 
Laflamme C

2022 Antibody Characterization 
Report for QPRTase 
(Nicotinate- nucleotide 
pyrophosphorylase 
[carboxylating])

https:// doi. org/ 10. 
5281/ zenodo. 7459387

Zenodo, 10.5281/
zenodo.7459387

Fotouhi M, Ryan J, 
Worrall D, Ayoubi 
R, Reintsch W, 
Durcan TM, Brown 
CM, McPherson PS, 
Laflamme C

2023 Antibody Characterization 
Report for RNA- binding 
protein TIA1

https:// doi. org/ 10. 
5281/ zenodo. 7671718

Zenodo, 10.5281/
zenodo.7671718

Alshafie W, Fotouhi 
M, Shlaifer I, Durcan 
TM, McPherson PS, 
Laflamme C

2021 Antibody Characterization 
Report for Optineurin

https:// doi. org/ 10. 
5281/ zenodo. 4730992

Zenodo, 10.5281/
zenodo.4730992

Ayoubi R, Fotouhi 
M, You Z, Durcan 
TM, McPherson PS, 
Laflamme C

2021 Antibody Characterization 
Report for Peroxiredoxin- 1

https:// doi. org/ 10. 
5281/ zenodo. 4818397

Zenodo, 10.5281/
zenodo.4818397

Ayoubi R, Alshafie W, 
Nicouleau M, Durcan 
TM, McPherson PS, 
Laflamme C

2021 Antibody Characterization 
Report for Peroxiredoxin- 6

https:// doi. org/ 10. 
5281/ zenodo. 4730953

Zenodo, 10.5281/
zenodo.4730953

Ayoubi R, Fotouhi M, 
Moleon RuizV, Ryan 
J, Worrall D, Reintsch 
W, Durcan TM, Brown 
CM, McPherson PS, 
Laflamme C

2023 Antibody Characterization 
Report for Plasma 
membrane calcium- 
transporting ATPase 1

https:// doi. org/ 10. 
5281/ zenodo. 7971932

Zenodo, 10.5281/
zenodo.7971932

Ayoubi R, Fotouhi 
M, You Z, Durcan 
TM, McPherson PS, 
Laflamme C

2021 Antibody Characterization 
Report for Plectin

https:// doi. org/ 10. 
5281/ zenodo. 4724176

Zenodo, 10.5281/
zenodo.4724176

Ayoubi R, Gonzalez 
Bolivar S, McPherson 
PS, Laflamme C

2022 Antibody Characterization 
Report for Pleiotrophin

https:// doi. org/ 10. 
5281/ zenodo. 7459312

Zenodo, 10.5281/
zenodo.7987214

Ayoubi R, Alshafie 
W, McPherson PS, 
Laflamme C

2022 Antibody Characterization 
Report for Pro- cathepsin H

https:// doi. org/ 10. 
5281/ zenodo. 5903713

Zenodo, 10.5281/
zenodo.5903713

McDowell I, Ayoubi 
R, Ryan J, Fotouhi 
M, Reintsch W, 
Durcan TM, Brown 
CM, McPherson PS, 
Laflamme C

2022 Antibody Characterization 
Report for Profilin- 1

https:// doi. org/ 10. 
5281/ zenodo. 7249258

Zenodo, 10.5281/
zenodo.7249258

Ayoubi R, Fotouhi 
M, Ryan J, Gonzalez 
Bolivar S, Worrall 
D, Reintsch W, 
Durcan TM, Brown 
CM, McPherson PS, 
Laflamme C

2023 Antibody Characterization 
Report for Prolow- density 
lipoprotein receptor- related 
protein1 (LRP- 1)

https:// doi. org/ 10. 
5281/ zenodo. 7971951

Zenodo, 10.5281/
zenodo.7971951

 Continued

 Continued on next page
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Author(s) Year Dataset title Dataset URL Database and Identifier

Ayoubi R, Alshafie 
W, Fotouhi M, 
McPherson PS, 
Laflamme C

2022 Antibody Characterization 
Report for Retinoic acid 
receptor RXR- alpha

https:// doi. org/ 10. 
5281/ zenodo. 6566983

Zenodo, 10.5281/
zenodo.6566983

Worrall D, Ryan J, 
Ayoubi R, Fotouhi 
M, Reintsch W, 
Durcan TM, Brown 
C, McPherson PS, 
Laflamme C

2022 Antibody Characterization 
Report for Rho GDP- 
dissociation inhibitor 1 (Rho 
GDI 1)

https:// doi. org/ 10. 
5281/ zenodo. 7249083

Zenodo, 10.5281/
zenodo.7249221

Alshafie W, Fotouhi 
M, You Z, Durcan 
TM, McPherson PS, 
Laflamme C

2021 Antibody Characterization 
Report for RNA- binding 
protein FUS

https:// doi. org/ 10. 
5281/ zenodo. 5259944

Zenodo, 10.5281/
zenodo.5259945

Ayoubi R, McPherson 
PS, Laflamme C

2022 Antibody Characterization 
Report for Secreted 
frizzled- related protein 1

https:// doi. org/ 10. 
5281/ zenodo. 6370454

Zenodo, 10.5281/
zenodo.6370454

Ayoubi R, Alshafie 
W, Shlaifer I, Durcan 
TM, McPherson PS, 
Laflamme C

2021 Antibody Characterization 
Report for Sequestosome- 1

https:// doi. org/ 10. 
5281/ zenodo. 4818440

Zenodo, 10.5281/
zenodo.4818440

Ayoubi R, McPherson 
PS, Laflamme C

2022 Antibody Characterization 
Report for Serine protease 
HTRA1

https:// doi. org/ 10. 
5281/ zenodo. 7249120

Zenodo, 10.5281/
zenodo.7986850

Alshafie W, Fotouhi 
M, Shlaifer I, You 
Z, Durcan TM, 
McPherson PS, 
Laflamme C

2021 Antibody Characterization 
Report for Serine/
threonine- protein kinase 
Nek1

https:// doi. org/ 10. 
5281/ zenodo. 5061736

Zenodo, 10.5281/
zenodo.5061736

Alshafie W, Fotouhi 
M, Shlaifer I, Durcan 
TM, McPherson PS, 
Laflamme C

2021 Antibody Characterization 
Report for Serine/
threonine- protein kinase 
TBK1

https:// doi. org/ 10. 
5281/ zenodo. 5061682

Zenodo, 10.5281/
zenodo.6402968

Alshafie W, Fotouhi 
M, Ayoubi R, 
Nicouleau M, Durcan 
TM, McPherson PS, 
Laflamme C

2021 Antibody Characterization 
Report for Sigma non- 
opioid intracellular receptor 
1

https:// doi. org/ 10. 
5281/ zenodo. 5644356

Zenodo, 10.5281/
zenodo.5644356

Ayoubi R, Ryan 
J, Dekakra- Bellili 
L, Brown CM, 
McPherson PS, 
Laflamme C

2022 Antibody Characterization 
Report for Signal 
transducer and activator of 
transcription 5B (STAT5B)

https:// doi. org/ 10. 
5281/ zenodo. 7249185

Zenodo, 10.5281/
zenodo.7249185

Ayoubi R, Nicouleau 
M, Durcan TM, 
McPherson PS, 
Laflamme C

2022 Antibody Characterization 
Report for SPARC- related 
modular calcium- binding 
protein 1 (SMOC1)

https:// doi. org/ 10. 
5281/ zenodo. 6566878

Zenodo, 10.5281/
zenodo.6566878

Alshafie W, Ayoubi 
R, McPherson PS, 
Laflamme C

2021 Antibody Characterization 
Report for Spastin

https:// doi. org/ 10. 
5281/ zenodo. 5644358

Zenodo, 10.5281/
zenodo.5644358

Ayoubi R, Fotouhi M, 
Ryan J, Reintsch W, 
Durcan TM, Brown 
CM, McPherson PS, 
Laflamme C

2022 Antibody Characterization 
Report for Spatacsin

https:// doi. org/ 10. 
5281/ zenodo. 7459431

Zenodo, 10.5281/
zenodo.7459431
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 Continued on next page
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Author(s) Year Dataset title Dataset URL Database and Identifier

Ayoubi R, Alshafie 
W, You Z, Durcan 
TM, McPherson PS, 
Laflamme C

2021 Antibody Characterization 
Report for Superoxide 
dismutase [Cu- Zn] (SOD1)

https:// doi. org/ 10. 
5281/ zenodo. 5061103

Zenodo, 10.5281/
zenodo.5061103

Ayoubi R, Alshafie 
W, Fotouhi M, 
You Z, Durcan TM, 
McPherson PS, 
Laflamme C

2021 Antibody Characterization 
Report for Synaptotagmin- 1

https:// doi. org/ 10. 
5281/ zenodo. 5644331

Zenodo, 10.5281/
zenodo.5644331

Ayoubi R, McPherson 
PS, Laflamme C

2022 Antibody Characterization 
Report for Syndecan- 4

https:// doi. org/ 10. 
5281/ zenodo. 6566857

Zenodo, 10.5281/
zenodo.6566857

Ayoubi R, Alshafie 
W, McPherson PS, 
Laflamme C

2022 Antibody Characterization 
Report for Syntaxin- 4

https:// doi. org/ 10. 
5281/ zenodo. 5903087

Zenodo, 10.5281/
zenodo.5903087

Worrall D, Ryan J, 
Fotouhi M, Ayoubi 
R, Reintsch W, 
Durcan TM, Brown 
CM, McPherson PS, 
Laflamme C

2022 Antibody Characterization 
Report for TDP- 43

https:// doi. org/ 10. 
5281/ zenodo. 6841232

Zenodo, 10.5281/
zenodo.7249802

Fotouhi M, Moleon 
RuizV, Ryan J, Worrall 
D, Ayoubi R, Reintsch 
W, Durcan TM, Brown 
CM, McPherson PS, 
Laflamme C

2023 Antibody Characterization 
Report for Valosin- 
containing protein VCP

https:// doi. org/ 10. 
5281/ zenodo. 7971904

Zenodo, 10.5281/
zenodo.7971904

Ayoubi R, Fotouhi M, 
Ryan J, Reintsch W, 
Durcan TM, Brown 
CM, McPherson PS, 
Laflamme C

2022 Antibody Characterization 
Report for Transmembrane 
protein 106B

https:// doi. org/ 10. 
5281/ zenodo. 7459629

Zenodo, 10.5281/
zenodo.7459629

Ayoubi R, Alshafie 
W, Dekakra- Bellili 
L, McPherson PS, 
Laflamme C

2022 Antibody Characterization 
Report for Tuberin

https:// doi. org/ 10. 
5281/ zenodo. 6370612

Zenodo, 10.5281/
zenodo.6377409

Fotouhi M, Alshafie 
W, Shlaifer I, Ayoubi 
R, Durcan TM, 
McPherson PS, 
Laflamme C

2022 Antibody Characterization 
Report for Tubulin alpha- 4A 
chain

https:// doi. org/ 10. 
5281/ zenodo. 5903719

Zenodo, 10.5281/
zenodo.7987237

Alshafie W, Fotouhi 
M, Ayoubi R, 
McPherson PS, 
Laflamme C

2022 Antibody Characterization 
Report for TYRO protein 
tyrosine kinase- binding 
protein (TYROBP)

https:// doi. org/ 10. 
5281/ zenodo. 6941517

Zenodo, 10.5281/
zenodo.6941517

Alshafie W, Fotouhi 
M, Ayoubi R, 
McPherson PS, 
Laflamme C

2022 Antibody Characterization 
Report for Tyrosine- protein 
kinase SYK

https:// doi. org/ 10. 
5281/ zenodo. 6566940

Zenodo, 10.5281/
zenodo.6566940

McDowell I, Fotouhi 
M, Ryan J, Ayoubi 
R, Reintsch W, 
Durcan TM, Brown 
CM, McPherson PS, 
Laflamme C

2022 Antibody Characterization 
Report for Ubiquilin- 2

https:// doi. org/ 10. 
5281/ zenodo. 7459541

Zenodo, 10.5281/
zenodo.7459541
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Author(s) Year Dataset title Dataset URL Database and Identifier

Ayoubi R, Fotouhi 
RM, Ryan J, Reintsch 
W, Durcan TM, Brown 
CM, McPherson PS, 
Laflamme C

2023 Antibody Characterization 
Report for hVPS35 
(Vacuolar protein sorting- 
associated protein 35)

https:// doi. org/ 10. 
5281/ zenodo. 7671730

Zenodo, 10.5281/
zenodo.7671730

Fotouhi M, Alshafie 
W, Shlaifer I, Ayoubi 
R, Durcan TM, 
McPherson PS, 
Laflamme C

2022 Antibody Characterization 
Report for Vesicle- 
associated membrane 
protein- associated protein 
B/C (VAPB)

https:// doi. org/ 10. 
5281/ zenodo. 6370535

Zenodo, 10.5281/
zenodo.6370535
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