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MFBind: a Multi-Fidelity Approach
for Evaluating Drug Compounds in Practical Generative Modeling
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Abstract

Current generative models for drug discovery pri-
marily use molecular docking to evaluate the qual-
ity of generated compounds. However, such mod-
els are often not useful in practice because even
compounds with high docking scores do not con-
sistently show experimental activity. More accu-
rate methods for activity prediction exist, such
as molecular dynamics based binding free energy
calculations, but they are too computationally ex-
pensive to use in a generative model. We propose
a multi-fidelity approach, Multi-Fidelity Bind
(MFBind), to achieve the optimal trade-off be-
tween accuracy and computational cost. MFBind
integrates docking and binding free energy simula-
tors to train a multi-fidelity deep surrogate model
with active learning. Our deep surrogate model
utilizes a pretraining technique and linear predic-
tion heads to efficiently fit small amounts of high-
fidelity data. We perform extensive experiments
and show that MFBind (1) outperforms other state-
of-the-art single and multi-fidelity baselines in sur-
rogate modeling, and (2) boosts the performance
of generative models with markedly higher quality
compounds.

1. Introduction

Generative models for de novo drug design have gained
significant interest in machine learning for their promised
ability to quickly generate new compounds. However, gen-
erating compounds with real-world activity remains a fun-

damental challenge (Handa et al., 2023; Coley et al., 2020),
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limiting the widespread adoption of generative models in
practical drug discovery (Paul et al., 2021). One of the main
difficulties is the computational evaluation of compound
binding affinity. The generated compounds are often highly
novel, so an activity predictor trained with existing exper-
imental data is insufficient due to poor out-of-distribution
generalization (Chatterjee et al., 2023; Ji et al., 2022). In-
stead, physics-based methods that model the 3D interaction
between compound and target are commonly used.

Due to its speed, molecular docking is the prevalent physics-
based method used to evaluate novel compounds by gen-
erative models (Eckmann et al., 2022; Jeon & Kim, 2020;
Lee et al., 2023; Noh et al., 2022; Fu et al., 2022; Spiegel
& Durrant, 2020; Peng et al., 2022; Guan et al., 2023a;b).
However, docking is known to be a relatively poor predictor
of activity (Pinzi & Rastelli, 2019; Handa et al., 2023; Coley
et al., 2020; Feng et al., 2022), so it would be desirable to
apply more accurate binding free energy calculation tech-
niques (Pinzi & Rastelli, 2019; Feng et al., 2022). Such
techniques, utilizing molecular dynamics simulations, are
currently considered the most reliable approach to compu-
tational prediction of affinity (Moore et al., 2023; Cournia
et al., 2021). However, they have not been used by genera-
tive models due to their high computational cost (Thomas
et al., 2023), with a single compound-protein pair taking
hours to days to simulate on a powerful computer (Wan
et al., 2020). Thus, neither docking nor binding free energy
techniques alone are sufficient for the practical application
of generative models.

Multi-fidelity modeling (Ferndndez-Godino et al., 2016) is
an approach to integrate data from simulators with vary-
ing accuracy and costs. Multi-fidelity modeling has been
successfully applied in scientific areas such as climate mod-
eling (Wu et al., 2022) and materials science (Fare et al.,
2022), but their adoption in drug discovery has been limited.
Hernandez-Garcia et al. (2023) study their use in peptide
design, but they construct a proof-of-concept artificial set
of fidelities and costs where even the highest fidelity is not
expected to be very accurate.

In this paper, we address the difficulty of drug compound
binding affinity evaluation by proposing a multi-fidelity
modeling framework, Multi-Fidelity Bind (MFBind), to
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achieve the optimal trade-off between accuracy and compu-
tational cost. Our framework (Figure 1) consists of a new
multi-fidelity environment for binding affinity prediction,
and a deep surrogate model that integrates data from each fi-
delity level to accurately and cheaply mimic the behavior of
the binding free energy method. Our model learns a shared
compound encoding across all fidelities, and then uses reg-
ularized linear heads to output predictions at each fidelity
level. We also pretrain the surrogate model on the large
quantity of lower fidelity data, and then fine-tune the model
on all fidelities, using active learning. More specifically,

* we introduce a novel multi-fidelity modeling frame-
work, MFBind, for evaluating the binding affinity
of drug compounds in generative modeling that in-
tegrates data from existing experimental results, molec-
ular docking, and binding free energy simulators

* we propose a deep surrogate model, which utilizes a
pretraining technique on the data from the lower set
of fidelities, and efficiently train it using a cost-aware
multi-fidelity active learning approach.

» we perform extensive evaluations of ours and base-
line models on two real-world problem settings, multi-
fidelity surrogate modeling and generative modeling,
showing the practicality of our framework.

2. Related Work

2.1. Molecular generative models

Generative models in drug discovery have gained much
interest for their ability to quickly generate compounds with
desired properties (Paul et al., 2021). Early works (Jin
et al., 2018; Gomez-Bombarelli et al., 2018; You et al.,
2018) focus on properties such as the octanol-water partition
coefficient (logP) or quantitative estimate of drug-likeness
(QED), which are of very limited practical utility (Coley
et al., 2020; Xie et al., 2021). More recently, there has
been an understanding that the binding affinity to a targeted
protein is much more relevant for practical drug discovery
(Xie et al., 2021; Eckmann et al., 2022; Fu et al., 2022).

One approach to guide generative models in optimizing
compound binding affinity is to use a reward function for
compound evaluation. This reward function can be applied
to reinforcement learning (Jeon & Kim, 2020; Fu et al.,
2022), VAEs (Eckmann et al., 2022; Noh et al., 2022), ge-
netic algorithms (Spiegel & Durrant, 2020; Fu et al., 2022),
or diffusion models (Lee et al., 2023). All of them use dock-
ing software, such as AutoDock (Morris et al., 2009), as
the reward function, because it is the only reasonably fast
option. However, docking is known to be inaccurate (Pinzi
& Rastelli, 2019), and compounds with high docking scores

do not consistently show experimental activity (Handa et al.,
2023; Coley et al., 2020; Feng et al., 2022).

More reliable molecular dynamics-based binding free en-
ergy calculations, which are much more accurate than dock-
ing (Moore et al., 2023; Cournia et al., 2021), have not
yet been applied to de novo generative drug design due to
their high computational cost (Thomas et al., 2023). While
Ghanakota et al. (2020) use binding free energy calculations
in combination with a molecular generative model, they
focus on the optimization of an existing known lead com-
pound. This allows them to rely on much cheaper relative
binding free energy calculations, as opposed to the absolute
binding free energy (ABFE) calculations needed for de novo
design (Cournia et al., 2017).

Structure-based generative models are trained on 3D struc-
tures of protein-ligand pairs, and aim to predict a 3D ligand
that fits in a given protein pocket with high binding affinity.
Techniques include autoregressive generation (Peng et al.,
2022) and diffusion modeling (Guan et al., 2023a;b). De-
spite not needing a reward function like docking during the
generation process, the generated compounds are still eval-
uated with docking as a post-processing step. This means
structure-based generative models do not avoid the issue of
inaccurate binding affinity prediction.

2.2. Multi-fidelity modeling

Multi-fidelity modeling methods aim to fuse multiple data
sources of variable accuracy and cost (Fernandez-Godino
etal., 2016), and are widely used in scientific fields for surro-
gate modeling and uncertainty quantification (Brevault et al.,
2020). A popular choice of surrogate model is a Gaussian
process (GP), which performs well in low data settings and
produces well-calibrated uncertainty estimates (Brevault
et al., 2020). One such technique to apply GPs to multi-
fidelity modeling is described by Wu et al. (2020), where a
downsampling kernel is used to output predictions at each
fidelity level. While GPs cannot scale to large amounts of
data, approaches like KISS-GP (Wilson & Nickisch, 2015)
and DKL (Wilson et al., 2016) learn a deep neural kernel
to scale GPs. Other surrogate modeling approaches utilize
neural processes (Wang & Lin, 2020; Wu et al., 2022) and
ordinary differential equations (Li et al., 2022).

Multi-fidelity modeling is frequently used in an active learn-
ing context, where one uses an estimate of a model’s un-
certainty to most efficiently acquire more datapoints (Ren
et al., 2021). In the multi-fidelity setting, this means itera-
tively querying across both the sampling space of molecules
and each different fidelity level (Li et al., 2020; Hernandez-
Garcia et al., 2023). This approach has been applied in
climate modeling (Wu et al., 2022), fluid dynamics (Li et al.,
2020; Wang et al., 2021), and materials science (Fare et al.,
2022). For drug discovery, Hernandez-Garcia et al. (2023)
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Figure 1. Overview of MFBind. We train a multi-fidelity surrogate model to predict the outputs from all fidelity simulators. Then, we use
the model to evaluate the acquisition function, and then pick the next molecule and fidelity level to query the simulators. The result is then
added to the training dataset, and the process is repeated. A generative model uses the trained multi-fidelity surrogate model to evaluate its

candidate compounds.

seek to design peptides with anti-microbial activity using
multi-fidelity active learning, but they construct an artifi-
cial hierarchy of fidelities and associated costs by training
the same machine learning model on different data subsets.
This means even the highest fidelity is likely to not be very
accurate, as machine learning predictors are typically not
as accurate as physics-based methods (Moore et al., 2023;
Cournia et al., 2021; Chatterjee et al., 2023) and suffer from
out-of-distribution generalization issues (Ji et al., 2022).

3. MFBind

We introduce MFBind, a novel multi-fidelity modeling
framework for evaluating compound binding affinities. Our
framework consists of a multi-fidelity environment, a deep
surrogate model, and an active learning algorithm.

3.1. Multi-fidelity binding affinity environment

A multi-fidelity environment consists of a set of simula-
tors {f1, -, fx}, each of which output an increasingly
accurate estimate of the value of interest. Define ¢ > 0
as the computational cost for a given simulator, such that
c1 < cg < --- < cgk. The goal of multi-fidelity modeling is
to learn a surrogate model f 5 that can accurately approx-
imate fx using a limited amount of high-fidelity data by
incorporating data from multiple simulators.

We introduce a new multi-fidelity environment for binding
affinity which uses three simulators, each of which takes
a molecule as input and outputs an estimate of its binding
affinity to a targeted protein with increasing accuracy:

1. AutoDock4 (f1; ¢c; = 30s) (Morris et al., 2009). Uses
geometric and charge information from the protein and
compound to estimate the binding energy. It outputs a
total binding energy prediction in kcal/mol, as well as
a set of 15 other outputs, such as energy components

for each type of interaction and the number of protein-
compound hydrogen bonds (see Appendix A for a full
list), some of which are computed in a post-processing
step by BINANA (Young et al., 2022).

2. Experimental data (f5; c; = N/A) (Liu et al., 2007).
Binding values from laboratory experimental studies,
obtained from BindingDB. Because it is infeasible to
“query” a laboratory for new compounds, we restrict
this simulator to only evaluate compounds with known
activity values.

3. Absolute binding free energy (ABFE) (f3; ¢z =
37,521s = 10.4hrs) (Heinzelmann & Gilson, 2021).
A binding free energy method applicable to de novo
discovery that uses molecular dynamics simulations to
accurately predict the binding energy in kcal/mol.

Note that AutoDock4 produces a total of 16 different outputs
related to the protein-compound interaction, each of which
can be modeled and may aid in the prediction of ABFE
scores. The other two fidelities only output a single value.
See Appendix A for more details about the environment.

AutoDock4 and ABFE can calculate activities for any com-
pound, whereas the experimental data is only present for a
limited set of compounds. While our goal is ultimately to
discover compounds with strong experimental binding, we
do not make experimental data the highest fidelity simulator
because it cannot be queried for arbitrary molecular inputs.
Instead, we treat ABFE as the highest fidelity simulator, and
use the limited experimental data as a way to improve the
surrogate modeling of ABFE scores.

To prove that the higher cost simulators are more accu-
rate, Figure 2 shows the classification performance of the
AutoDock4 and ABFE simulators on the test set for the
BRD4(2) target (see Sec. 4). The test set consists of half
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Figure 2. ROC curve of each simulator on the BRD4(2) test
set. Two curves are shown for AutoDock4, one that uses the total
binding energy output only, and one that uses a linear surrogate
that takes all 16 outputs from AutoDock4 and outputs a prediction
of the ABFE score.

experimentally confirmed active compounds and half pre-
sumed inactives. As expected, the ABFE simulator is the
most accurate, while AutoDock4 is still moderately pre-
dictive. Additionally, a linear surrogate that uses all 16
AutoDock4 outputs outperforms using only AutoDock4’s
total binding energy prediction. See Appendix C.1 for more
information about these results and data from more targets.

3.2. Multi-fidelity deep surrogate model

Many previous multi-fidelity surrogate models are ill-suited
to our proposed environment because the simulators at each
fidelity have variable output dimensions, and collecting
large amounts (> 100 samples) of high-fidelity data is very
costly. Specifically, GP-based methods can only fit a single
scalar output at each fidelity level (Wu et al., 2020) and/or
do not support a variable number of output dimensions at
each fidelity (Wang et al., 2021). Deep learning models (Li
et al., 2020; Wu et al., 2023) also struggle to generalize from
a limited amount of high-fidelity training data, likely due to
over-parameterization of individual layers.

We propose a new deep surrogate model to address these
limitations. Our model consists of a neural encoder, shared
across all fidelities, to generate a representation of the input
molecule, and linear fidelity-specific prediction heads that
transform that representation into a prediction of the fidelity
output. The prediction heads are able to output varying
dimensionalities for each fidelity.

Mathematically, let h be a feedforward neural network that
encodes a molecule z, represented as a 2048-dimensional
Morgan fingerprint, into an n-dimensional real-valued vec-
tor. Then, define the fidelity-specific heads as a vector of

parameters w; € R™*16 and wo, w3 € R™*!, and a set
of biases, b; € Rm, b2, b3 € R, one for each fidelity level.
Note that the weights and biases for the first fidelity level,
AutoDock4, are 16-dimensional so that we can model all
outputs from that simulator, while the other two fidelities
only have scalar output. See Appendix B.1 for more details
and a diagram of our surrogate model.

The surrogate model is trained on a dataset D comprising
tuples of the form (z, k, f(x)), where z is a molecule and
k is a fidelity level. The model is trained to minimize the
following loss function:

1 [ fx ()] _ , N 2
o 2 2 (@ ) - ) )
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3
+Areg > llwilf3
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=
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where fi.(x)(® is the ith output of the simulator at fidelity
level k (only relevant for AutoDock4, which has 16 outputs),
||3 denotes L2 regularization, \j, is a weighting parameter
for fidelity k, and A, is the regularization strength. The
regularization of the linear heads ensures that the model
does not overfit on a small amount of high-fidelity data.

We employ a pretraining strategy to improve model perfor-
mance and reduce overfitting issues, where we first train the
model on only the two lowest fidelities (without ABFE), and
then finetune on all fidelities, including ABFE. The number
of epochs for both phases is determined via hyperparameter
tuning. This approach is inspired by the pretraining method
for multi-task learning (Kaplun et al., 2023). Intuitively, the
pretraining phase helps the model learn an effective encoder
on the two fidelities with a large amount of data, without
overfitting the encoder on the small number of ABFE points.
Then, after this “warm start” on the encoder, the finetuning
phase allows the model to learn features specific for ABFE
prediction.

We use Monte-Carlo (MC) dropout (Gal & Ghahramani,
2016) to estimate model uncertainty for active learning (ex-
plained in the subsequent section). For AutoDock4, which
has a 16-dimensional output, we normalize each of the 16
elements to have a mean of zero and unit variance (across
the training dataset), and then average the variance across
all elements. We perform this normalization step so that
one element with a greater magnitude does not dominate
the uncertainty estimation.
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Algorithm 1 Multi-fidelity active learning
Require: a multi-fidelity surrogate model g, a pre-
populated multi-fidelity training dataset D, a set of candi-
date points S, the cumulative active learning cost C' < 0,
a set of costs ¢y, co, c3, and the computational budget B
while C' < B do
g < TrainSurrogateModel(D)
maz X, maxK, maxVar + 0,0,0
for x in S do
forkin 1..3 do
var < a(z, k) (Sec. 3.3)
if var > maxVar then
max X, marK, maxVar < x,k,var
end if
end for
end for
D + DU {(mazX,maxK, fmaezx(mazX))}
C+C + Cmazk
end while

3.3. Active learning to train multi-fidelity surrogate

Learning a multi-fidelity surrogate model on our proposed
environment requires significant computational resources,
especially to gather data from ABFE. Instead of passively
collecting training data, we propose an active learning ap-
proach to efficiently query the simulators.

Our active learning algorithm involves iterative querying
of the simulators at the points where the model is most
uncertain, weighted by the computational cost. The model
is first trained on a limited prepopulated dataset D, and then
evaluates its uncertainty a(x, k) on each of the candidate
compounds x at each fidelity level k. After the compound
and associated fidelity level, i.e. simulator, with the highest
uncertainty is selected, that compound is run through the
simulator and the new activity data is added to the training
dataset D. The model is updated with the new data, and
the process is repeated until a computational budget B is
reached. Algorithm 1 describes such a procedure.

To quantify model uncertainty we define an acquisition
function a(z, k) that outputs the expected utility of query-
ing the simulator at fidelity k& for a compound z. In
this paper, we use the cost-weighted maximum variance,
a(xz, k) = Lo*(x,k). Here, o®(x, k) is the model uncer-
tainty (variance) at point x and fidelity k. We also tried an
entropy-based acquisition function, but found empirically
that the cost term dominated the entropy term, and thus the
model always chose to query the lowest cost simulator.

Since querying ABFE and docking for a single compound is
already parallelizable across multiple GPUs/cores (Heinzel-
mann & Gilson, 2021), we do not consider batch active
learning algorithms (Kirsch et al., 2019). We chose to re-

train the surrogate model after every query because the
computational cost of surrogate training is much lower than
even the fastest simulator.

4. Experimental results

To evaluate the utility of our MFBind framework, we con-
sider the following two experimental settings. First, we
evaluate the predictive performance of our multi-fidelity
surrogate model trained with active learning compared to
baseline multi-fidelity techniques. Second, we integrate our
deep surrogate model with existing generative models, and
compare the generated compounds to those generated by
the traditional single-fidelity methods. See Appendix B for
experimental details.

We conduct experiments on two targeted proteins: BRD4(2)
(PDB 5UF0) and c-MET (PDB 5EOB). BRD4(2), the sec-
ond binding domain of bromodomain-containing protein 4,
is a protein of interest for cancer treatment (French, 2008).
c-MET is a receptor tyrosine kinase that also shows promise
for treating cancer (Zhang et al., 2018). ABFE has previ-
ously been well-validated for both of these targets, where it
shows strong correlation with experimental results (Heinzel-
mann & Gilson, 2021; Huggins, 2022).

4.1. Multi-fidelity surrogate modeling
4.1.1. SETUP

We first evaluate the performance of our multi-fidelity surro-
gate model trained with active learning, using Algorithm 1
and a predefined candidate set of compounds, and compare
the results with those of baseline methods.

The training dataset for this test is initialized with data across
all fidelity levels, and then is supplemented with active learn-
ing data as the model queries the simulators. The initial
dataset for BRD4(2) includes the AutoDock4 output for
100,000 compounds randomly sampled from the ZINC250k
dataset (Irwin et al., 2012), 91 experimental activity values
for the BRD4(2) target obtained from BindingDB (Liu et al.,
2007), and one ABFE score of a compound randomly sam-
pled from the same BindingDB dataset. The initial dataset
for c-MET is the same, except the experimental data con-
tains 102 experimental activity values from BindingDB’s
c-MET target.

We initialize our dataset with only one datapoint from ABFE
so that we can make maximal use of active learning. The
candidate set, which is the pool of compounds available
to active learning, is obtained from BindingDB under the
“BRD4” target for BRD4(2) and “c-MET” for c-MET. Note
that the BRD4 target is a larger superset of BRD4(2), which
we chose because there were not enough compounds mea-
sured against only BRD4(2).
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Our held-out test set consists of precomputed ABFE results
for a curated set of 32 compounds for each target. Half
of these compounds come from BindingDB’s BRD4(2) or
c-MET dataset, with the constraint that the experimental
activity be < 1uM, and the other half from BRD4(2) or c-
MET decoys, which are presumed to be inactive, generated
by DUD-E (Mysinger et al., 2012). To ensure diversity, we
clustered BindingDB compounds in the test set so that no
compound had a Tanimoto similarity higher than 0.4 with
any other compound, and then generated decoy counterparts
for each of these compounds using DUD-E. We also ensured
the test compounds were dissimilar (Tanimoto similarity
< 0.4) to the compounds in the initial training and candidate
sets, removing them from the latter if any compounds were
too similar. We constructed the test dataset with both actives
and decoys so that we could measure the ability of each
simulator to distinguish between them (see Appendix C.1).

4.1.2. BASELINES

We compare our model with the following baseline methods
for multi-fidelity surrogate modeling:

* Only ABFE (NN). A simple feedforward neural net-
work that is only trained on ABFE scores.

¢ Direct-GP (DKL). A DKL-based (Wilson et al., 2016)
multi-fidelity GP model using a downsampling kernel
for the fidelities (Wu et al., 2020). Uses the “Direct”
output from AutoDock4, meaning the total binding
energy prediction, and discards all other AutoDock4
outputs.

* Surrogate-GP (DKL). Same as above, except for fo
we use a linear “Surrogate” model that takes all outputs
from AutoDock4 as input and outputs a prediction of
the ABFE score.

¢ D-MFDAL (Wu et al., 2023). A state-of-the-art neu-
ral process model and acquisition function for multi-
fidelity modeling. Learns a global and local represen-
tation for each fidelity level, avoiding the propagation
of errors from lower to higher fidelity levels.

e DMFAL (Li et al., 2020). A neural network-based
approach for modeling multi-fidelity high-dimensional
outputs by passing information from lower to higher
fidelity levels.

e Hadamard-MT (DKL) (Bonilla et al., 2007). A DKL-
based multi-task (MT) GP model where the kernel is
the Hadamard product of an input and task kernel. Each
fidelity is treated as its own task, except for AutoDock4
where we use all 16 outputs by treating each one as its
own task.

See Appendix B.2 for further details about these baselines.

Table 1. MFBind ablations. We report the test set MSE, for each
target, of each model modification when trained on the same set
of data queried by the full MFBind model at the end of the active
learning experiment.

ABLATION | BRD4(2) C-MET
NONE (MFBIND) 18.1 36.0
W/0 PRETRAINING 23.7 41.8
W/O REGULARIZATION 18.8 38.8
W/0 AUTODOCK4 DATA 20.4 37.5
W/0 EXPERIMENTAL DATA 25.5 40.8

4.1.3. RESULTS

Surrogate model performance. Figure 3 shows the pre-
diction error for both targets, measured in MSE between the
actual and predicted ABFE results in kcal/mol for the 32
compounds in the held-out test set, as the computational bud-
get allotted to active learning increases. The single-fidelity,
only ABFE approach performs poorly for both targets, show-
ing that MFBind aids in training models to predict ABFE
scores at a lower computational cost than using only ABFE
data. Among the multi-fidelity surrogate modeling base-
lines, ours performs the best across both targets, suggesting
that it is the most efficient at using cheaper non-ABFE meth-
ods to enhance the prediction of ABFE results.

Ablation study. Table 1 (first set of rows) shows the per-
formance of various ablations of the surrogate model, mea-
sured by MSE in kcal/mol on the test set. Each method was
trained on the same data as collected by MFBind during ac-
tive learning. “w/o Pretraining” means we did not perform
any pretraining on the lower fidelity data, and instead trained
the model on the full number of epochs using all fidelities.
“wl/o Regularization” means we removed the linear predic-
tion head regularization term. These results show that both
design choices, especially the pretraining step, significantly
contribute to the performance of our model.

We also studied the impact of ablating each lower fidelity
simulator (Table 1, second set of rows). “w/o AutoDock4
data” means we removed all data from the AutoDock4 fi-
delity level, and “w/o Experimental data” means we re-
moved all experimental data. As demonstrated, both of the
lower fidelity simulators are important for the model to learn
to predict data at the highest fidelity level.

4.2. Compound generation with MFBind

4.2.1. SETUP

To show the utility of MFBind in assisting molecular gener-
ative modeling, we seek to generate compounds using the
MFBind surrogate model as the reward function. We chose
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Figure 3. Regression of ABFE scores in an active learning setting. The y-axis shows the mean squared error (MSE), in kcal/mol, of
each method on the held-out test set. The x-axis shows the cumulative active learning query cost in days (wall clock time on a 9 core, 8
GPU server). Each line represents an average over 20 runs with random seeds (using caching of ABFE results to reduce running times),

with the shaded region indicating the standard deviation across runs.

LIMO (Eckmann et al., 2022), a variational autoencoder-
based generative model, due to its strong performance on
binding affinity optimization. We also explored MolDQN
(Zhou et al., 2019), a reinforcement learning approach, as
the generative model. However, we found MolDQN gen-
erated compounds that were not drug-like and in some
cases chemically implausible, even when including a drug-
likeness objective in the reward (see Appendix C.3).

We first trained ours and baseline surrogate models on the
same initial training dataset as the previous active learn-
ing task, except now including the ABFE scores for all
compounds in the candidate set. This ensured that the pre-
dictions from the reward function were as accurate as pos-
sible. Then, we froze the surrogate model and used it as a
reward function to evaluate generated compounds. We ex-
perimented with periodically updating the surrogate model
with active learning over the generated compounds, but
found that it led to comparable or worse performance than
not updating the model.

For each target and choice of surrogate model, we used
LIMO to generate 10,000 compounds intended to bind the
target, chose the top 20 unique compounds with the highest
surrogate-computed reward, and used full ABFE calcula-
tions to estimate their binding affinities. We incorporated
an additional drug-likeness (QED; Bickerton et al. (2012))
objective in the reward function, by adding 2x the QED of
the compound to the ABFE score predicted by the surrogate
model, to ensure the generated compounds were reasonably

drug-like. We also enforced a QED cutoff > 0.5 and maxi-
mum ring size < 7 for choosing the final 20 compounds.

4.2.2. BASELINES

We compared compounds generated with MFBind as the
reward function against the following baseline reward func-
tions:

« Single fidelity (SF) ABFE. A single-fidelity surrogate
model that is trained only on ABFE data. This baseline
is trained on the same number of ABFE datapoints as
MFBind, but without the data from the other fidelities.

* Single fidelity (SF) AutoDock4. Same as above, ex-
cept this baseline is only trained on the AutoDock4
total binding energy score without any other fidelity
data, including ABFE. This baseline is the prevalent
approach in molecular generative modeling, where the
docking score is used as a reward function.

See Appendix B.2 for more details about each baseline.
We did not include other multi-fidelity surrogate modeling
baselines in this experiment because of computational con-
straints, and the high noise in the generative setting which
makes a comparison between competing multi-fidelity sur-
rogates difficult without a large number of samples.
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Table 2. Evaluation of LIMO-generated compounds with different surrogate models. The mean and top 3 ABFE-computed energies,
both in kcal/mol, are shown among 20 tested compounds from each method and for each target. “SF” refers to single-fidelity methods that
only use one simulator, while our “MFBind” approach uses all simulators. All compounds have QED > 0.5.

\ BRD4(2) C-MET

METHOD | MEAN IsT 2ND 3RD | MEAN IST 2ND 3RD

SF ABFE -2.94 -5.60 -5.26  -4.57 3.14 -5.19 -3.05 -2.79

SF AutoDock4 | -2.81 -4.46 -4.01  -3.40 2.81 -5.87 -3.30  -2.51

MFBIND -4.16 -10.94 -10.04 -7.38 | -3.69 -11.25 -11.06 -9.10

E 5. Discussion and Conclusion
= o}
BRD4(2) Ow N We present a new multi-fidelity framework, MFBind, for
-10.94 kcal/mol '\LI) evaluating compound binding affinity in generative mod-
o X els. We introduce a new multi-fidelity environment for
binding affinity that consists of docking (AutoDock4), ex-
c-MET | AN 0 perimental data (from BindingDB), and binding free energy
_ (ABFE) simulators. Our framework also contains a deep
- = . . . . .
11.25 keal/mol NLﬁ surrogate model trained with an active learning algorithm
NH

Figure 4. Selected generated compounds from LIMO + MF-
Bind. The top compound for both BRD4(2) and c¢-MET are shown.
See Appendix C.2 for more compounds.

4.2.3. RESULTS

Table 2 shows the computed ABFE scores for the top 20
compounds with the highest predicted reward generated un-
der the guidance of each surrogate model for each target.
For both targets, among the sample of 20 compounds, the
mean ABFE score of compounds from MFBind is distinctly
lower (indicating better binding affinity) than the same num-
ber of compounds generated using either the single-fidelity
ABFE or single-fidelity AutoDock4 approaches. Addition-
ally, the top three compounds for both targets from MFBind
have dramatically better ABFE results than the top three
compounds from the single-fidelity methods. Note that MF-
Bind is the only approach that generated compounds in the
nanomolar K, range (< —8.2 kcal/mol), a widely used
activity cutoff in early drug discovery to determine which
compounds show promise (Hughes et al., 2011).

Figure 4 shows the top compound generated from LIMO +
MFBind for each target. The compounds appear relatively
synthnesizable and drug-like while having strong ABFE-
predicted affinity. See Appendix C.2 for more examples.

These results, combined with the fact that ABFE results cor-
relate well with experiment for both targets (Heinzelmann
& Gilson, 2021; Huggins, 2022), indicate that the MFBind
surrogate model allows us to generate much more promising
compounds than either of the single-fidelity approaches.

to further reduce cost. Our surrogate model can fit small
amounts of high-fidelity data using a pretraining method
on the lower fidelity data, combined with regularized linear
fidelity-specific prediction heads.

We perform extensive evaluation of ours and baseline ap-
proaches in multi-fidelity surrogate modeling, and find that
our model is most capable of efficiently utilizing a limited
computational budget to predict the ABFE score of unseen
compounds. We also test our framework in a molecular
generative modeling task, where we use the surrogate model
as a reward function for generation. We find that MFBind
outperforms common approaches that use a single-fidelity
reward function. It can generate compounds with markedly
higher activity, as computed by the accurate binding free
energy simulator, than competing methods. Therefore, MF-
Bind shows promise as a way to make generative models
for drug discovery useful in practice.

We note that the greatest accuracy surrogate model would
presumably be obtained by training purely against, e.g.,
thousands of ABFE results, without the other fidelities.
However, generating these training data would be exceed-
ingly costly, given that ABFE calculations are around 1250x
slower than docking calculations. An important implication
of the present results is that, although docking results are
not as accurate as ABFE results, and although their corre-
lation coefficients with ABFE results are modest (r = 0.25
(BRD4(2)) and » = 0.23 (c-MET), see Appendix C), the
docking results can still be used to boost the predictivity of
a model trained with a fixed number of ABFE results.

Limitations of our approach include a limited set of simu-
lators and potentially a lack of synthesizability of the gen-
erated molecules. Since the only objectives we consider
when generating compounds are the binding affinity and
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QED, it is possible that the compounds could be difficult
to synthesize. Additionally, our acquisition function for
active learning is somewhat simple. Instead of averaging
the uncertainty from all AutoDock4 outputs, further studies
can be done on weighing them by importance.

Future work could include making the acquisition function
more complex, and adding more fidelities, such as deep
learning-based binding affinity predictors and ABFE with
varying simulation times. Another next step would be to use
a reaction-aware generative model that generates more syn-
thesizable molecules, such as Horwood & Noutahi (2020).

Impact statement Similar to other works that apply ma-
chine learning to drug discovery, our work is subject to dual
use (Urbina et al., 2022). There is potential for societal bene-
fit, by helping develop new drug compounds to treat disease.
However, there is also potential for harm, such as to gen-
erate new chemical weapons. Fortunately, the latter places
a whole additional set of requirements on compounds (e.g.
skin-absorbable or volatile and subject to inhalation), so this
problematic direction does not appear to be imminent.
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A. Environment details

For all simulators, we estimated the cost using the average over 10 samples with random input compounds.

AutoDock4 We prepared the AutoDock4 grid files using AutoDockTools (Morris et al., 2009). Arbitrary ligands were
prepared using obabel (O’Boyle et al., 2011) with pH 7.4 and gasteiger partial charges. We used AutoDock-GPU (Santos-
Martins et al., 2021), a GPU-accelerated version of AutoDock4, for all computation. The full set of outputs we collected
from AutoDock4 are as follows, with the last 9 collected in a post-processing step from BINANA (Young et al., 2022):

* Total binding energy (“Estimated Free Energy of Binding” in the AutoDock4 output), minimum over 20 random restarts
* Total binding energy, mean over 20 random restarts
¢ Intermolecular energy

¢ Internal energy

* Torsional energy

* Unbound system energy

* Number of ligand atoms

* Number of protein-ligand hydrogen bonds

* Number of protein-ligand pi-pi stacking bonds

* Number of protein-ligand salt bridges

* Number of protein-ligand T-stacking interactions

* Number of protein-ligand close contacts

* Backbone alpha flexibility

* Backbone other flexibility

¢ Sidechain alpha flexibility

¢ Sidechain other flexibility

Absolute binding free energy (ABFE) We use the Binding Affinity Tool (BAT.py) implementation (Heinzelmann &
Gilson, 2021) for absolute binding free energy calculation, available at https://github.com/GHeinzelmann/
BAT.py, which uses the simultaneous decoupling and recoupling (SDR) method. All molecular dynamics simulators are
run with AMBER with GPU support. As BAT.py requires a starting pose for the ligand, we used the pose generated from
AutoDock4. We found that we were able to reduce the simulation times up to 80% from the default times for each phase
of the SDR computation without losing much accuracy. We additionally wrote custom scripts to parallelize molecular
dynamics runs across all available GPUs.

B. Experimental details

All experiments were conducted on a server with 8 RTX 2080 Ti GPUs. For our model and each baseline, we performed
a random hyperparameter search with 20 trials (across the hyperparameters listed below) and took the combination with
the best test set MSE when trained on the initial dataset combined with ABFE datapoints for the entire candidate set. We
conducted separate hyperparameter searches for each target, and used the same set of hyperparameters for both the surrogate
modeling and generative experiments. All models were trained with the Adam optimizer.
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Figure 5. Diagram of the MFBind surrogate model. An input molecule, represented as a Morgan fingerprint, is fed through the deep
encoder to produce a latent representation. That representation is then passed to linear fidelity-specific prediction heads to produce a
prediction for each fidelity level.

B.1. MFBind surrogate model details

Figure B.1 is a diagram of the MFBind surrogate model. Our deep molecular encoder consisted of 4 linear lay-
ers with ReLU activations and dropout after each layer, except the final layer. For estimating the model un-
certainty, we used the predictive variance over 50 samples using the same input with random dropout. Hyper-
parameters: encoding dim(n), hidden layer dim, 1lr, 1lr decay beta, Ao, A1, A2 =1, Aregs
pretraining epochs, finetuning epochs, dropout p

B.2. Baseline details
B.2.1. MULTI-FIDELITY SURROGATE MODELING

Only ABFE (NN) Simple feedforward neural network using the same architecture of molecular encoder as MFBind, and
a final linear layer to produce the ABFE prediction. Only trained on ABFE data. Used the same MC dropout technique as
our model to estimate the uncertainty. Hyperparameters: encoding dim, hidden layer dim, 1lr, lr decay
beta, num epochs, dropout p

Direct-GP (DKL) Exact GP model using a 3-layer deep kernel with ReLU activations to encode the input molecule,
which is then passed to the GP. A downsampling kernel (Wu et al., 2020) is used to produce the output at each fidelity
level. Since this model can only fit a scalar for each fidelity level, we used the total energy prediction from AutoDock4
only (instead of all 16 outputs). For this and all other GP-based baselines, we used the posterior variance to estimate model
uncertainty. Implemented using the BoTorch (Balandat et al., 2020) library. Hyperparameters: encoding dim, DKL
hidden layer dim, lr, num epochs

Surrogate-GP (DKL) Same as above, except instead of using the total energy prediction from AutoDock4, we used
a linear surrogate. Specifically, we took the available ABFE datapoints and trained a linear regression model with L2
regularization to predict the ABFE score of a compound using all outputs from AutoDock4 as input. Then, this model
was applied to all AutoDock4 datapoints to transform the multi-dimensional output into a scalar for use in the GP model.
Hyperparameters: same as above
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D-MFDAL Defines its own acquisition function, which we used. Used the code available at https://github.com/
Rose-STL-Lab/Multi-Fidelity-Deep-Active-Learning. Hyperparameters: hidden dim, epoch
num, 1r

DMFAL Defines its own acquisition function, which we used. Used the code available at https://github.com/
shib01i/DMFAL. Hyperparameters: l1r, reg strength, max epoch, hidden layer dim, base dim

Hadamard-MT (DKL) Exact GP model using a 3-layer deep kernel with ReL.U activations to encode the input molecule,
which is then passed to the GP. This multi-task GP uses the Hadamard product of the input kernel and a task kernel
(Bonilla et al., 2007). The task index is concatenated to the input (from the deep kernel). Since this is a multi-task
model, we can model all outputs from AutoDock4 by treating each one as its own task. Therefore, we learned 18 total
tasks: 1 for experimental data, 1 for ABFE, and 16 for AutoDock4. Implemented using GPyTorch (Gardner et al., 2018).
Hyperparameters: encoding dim, DKL hidden layer dim, lr, num epochs

B.2.2. COMPOUND GENERATION WITH MFBIND

For these baselines, we used the same hyperparameters as those chosen for the Only ABFE (NN) baseline in the above
surrogate modeling task.

Single fidelity (SF) ABFE Simple feedforward neural network using the same architecture of molecular encoder as
MFBind, and a final linear layer to produce the prediction. Only trained on ABFE data.

Single fidelity (SF) AutoDock4 Same as above, except only trained on the total binding energy prediction from AutoDock4
(without the 15 other outputs).

C. Additional results

C.1. Analysis of MFBind environment
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Figure 6. ROC curve of each simulator. Compounds from the BindingDB BRD4(2) and c-MET datasets are classified as active, and
decoys are classified as inactive.

We aim to show that each simulator in the MFBind environment meaningfully correlates to real-world experimental data.
Figure 6 shows a ROC curve for the ABFE and AutoDock4 simulators on our BRD4(2) and c-MET test datasets. The curve
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for experimental data is not shown, even though it is its own “simulator”, because there is no experimental data for half of
the test set (the decoy compounds). We classified all compounds from the BindingDB BRD4(2) and c-MET datasets, which
had activity < 1M, as “Active”, and all other decoy compounds as “Inactive.” “AutoDock4 (binding energy only)” uses
the total binding energy prediction from AutoDock4, while “AutoDock4 (all outputs)” uses a linear surrogate model that
takes all outputs from AutoDock4 as input and outputs a prediction of the ABFE score.

As shown, ABFE is the most predictive data source for experimental data, with a ROC-AUC of 0.97 for BRD4(2) and 0.89
for c-MET. As expected, the total binding energy from AutoDock4, the computationally cheaper data source, is a worse
predictor, but is still moderately predictive (ROC-AUC of 0.64 and 0.62). AutoDock4 (all outputs), which uses all outputs
from AutoDock4 to make predictions, is more predictive (ROC-AUC of 0.78 and 0.75) than AutoDock4 total binding energy,
but still worse than ABFE. We also measured the correlation between the binding energy predictions from AutoDock4 and
ABFE, finding a correlation of » = 0.25 for BRD4(2) and r» = 0.23 for c-MET. This helps explain why the multi-fidelity
approach works, because the cheaper simulator is correlated with the more expensive simulator.

These results show that the MFBind environment has the desirable property that the more expensive simulators make more
accurate predictions, meaning that it holds promise as an approach to making high-quality ABFE predictions without
incurring an infeasibly high computational cost. They also help motivate the multi-output approach with AutoDock4,
because it appears that considering all outputs from AutoDock4 is more useful than just the total energy prediction.

C.2. Compounds from LIMO generation

Figure 7 shows the top 3 compounds for each target generated from the LIMO generative model (Eckmann et al., 2022)
with MFBind as the reward function. As shown, the generated compounds are relatively drug-like while showing favorable
binding.

N
r/ =
0 .N - P F
BRD4(2) M@ ) S e
-10.94 -10.04 -7.38
N F

-11.25 -11.06 -9.10

Figure 7. Generated compounds from LIMO + MFBind. The ABFE score of each compound is shown at the bottom. The top row
shows the top 3 compounds generated for BRD4(2), and the bottom row for c-MET.

C.3. Generation with MolDQN

Table 3 shows the results from the same experimental procedure as from Section 4.2, except using MolDQN as the generative
model. We only tested the BRD4(2) target. While we decided not to include these results in the body text due to the
generated compounds not being very drug-like, these results show that MFBind is superior to the single-fidelity approaches
on another generative model. The lack of drug-likeness is likely due to the nature of the generative model, and cannot be
attributed to the surrogate model used as the reward.
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Figure 8 shows the top 3 generated compounds from MolDQN with MFBind as the reward function. The compounds are
generally non drug-like and have implausible structures such as the triple bond in a ring on the rightmost compound.

Table 3. Evaluation of MolDQN-generated compounds for BRD4(2). The mean and top 3 ABFE-computed energies are shown among
20 tested compounds from each method. “SF” refers to single-fidelity methods that only use one simulator, while our “MFBind” approach

uses all simulators. All compounds have QED > 0.5.

Ny P
N~ SN~
0

-14.06

METHOD ‘ MEAN 1sT 2ND 3RD
SF ABFE 1.78  -6.52  -4.47 -3.89
SF AutoDocCk4 -1.14 -6.66 -6.64 -5.41
MFBIND -3.41 -14.06 -8.14 -7.06
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Figure 8. Generated compounds from MolDQN + MFBind. The ABFE score of each compound is shown at the bottom. The compounds
are generally non drug-like, and some are chemically implausible (e.g. the rightmost compound with a triple bond in a ring).
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