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Abstract
Predicting the activities of compounds against
protein-based or phenotypic assays using only a
few known compounds and their activities is a
common task in target-free drug discovery. Exist-
ing few-shot learning approaches are limited to
predicting binary labels (active/inactive). How-
ever, in real-world drug discovery, degrees of com-
pound activity are highly relevant. We study Few-
Shot Compound Activity Prediction (FS-CAP)
and design a novel neural architecture to meta-
learn continuous compound activities across large
bioactivity datasets. Our model aggregates encod-
ings generated from the known compounds and
their activities to capture assay information. We
also introduce a separate encoder for the unknown
compound. We show that FS-CAP surpasses tra-
ditional similarity-based techniques as well as
other state of the art few-shot learning methods
on a variety of target-free drug discovery settings
and datasets.

1. Introduction
A key task in machine learning for drug discovery is to
predict the activity of compounds against a target-based or
phenotypic assay, reducing the need for expensive lab-based
experimental tests (Paul et al., 2021; Vamathevan et al.,
2019). Most existing methods (Öztürk et al., 2018; Somnath
et al., 2021; Ragoza et al., 2017; Stepniewska-Dziubinska
et al., 2018; Jones et al., 2021) require information about
the target protein, such as amino acid sequence or 3D struc-
ture. However, such information is not always available
due to experimental difficulties or a lack of mechanistic
disease understanding. Indeed, there is increasing interest
in target-free drug discovery (Haasen et al., 2017; Swin-
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ney & Lee, 2020) where only a few compounds with weak
activity in an experimental assay are known (Loew et al.,
1993; Acharya et al., 2011). These hit compounds, while
not drug candidates themselves, offer a starting point for
the discovery of more promising compounds. Traditional
methods use chemical similarity, such as the Tanimoto sim-
ilarity between structural compound fingerprints (Bajusz
et al., 2015), to find new compounds most similar to the
hit compounds. However, these compounds are often simi-
larly undesirable as drug candidates, based on the principle
that structurally similar compounds have similar properties
(Johnson & Maggiora, 1990).

We cast the problem of target-free compound activity predic-
tion as few-shot learning (Wang et al., 2020), a framework
that enables a trained model to generalize to new domains
(in this case, assays). Few-shot learning is usually inves-
tigated for multi-class classification problems. For drug
discovery, these techniques have been applied for binary
compound activity prediction (Vella & Ebejer, 2022; Altae-
Tran et al., 2017). However, since experimental activity
readouts are often continuous (Chandrasekaran et al., 2021),
formulation as a binary classification problem requires ad-
hoc activity thresholding and is overly simplistic. The few-
shot regression problem studied here is more relevant for
drug discovery applications (Joo et al., 2019; Lenhof et al.,
2022; Lee et al., 2022), although it is significantly more
challenging (Stanley et al., 2021).

In this paper, we propose Few-Shot Compound Activity
Prediction (FS-CAP), a model-based few-shot learning ap-
proach for target-free compound activity regression. Our
model bears some similarity to neural processes (NPs, Gar-
nelo et al. (2018a)) but with several important differences
that are relevant for compound activity prediction. Specifi-
cally, we use a deterministic neural encoder to represent con-
text compounds and their activities via a new multiplication-
based featurization. We also introduce a separate encoder for
the unknown compound to represent its assay-independent
binding characteristics. We concatenate these two encod-
ings and feed them to a predictor network to produce a final
prediction for the activity of the unknown compound, and
train the entire model using mean squared error (MSE).

Despite the rich literature on few-shot classification, few-
shot regression remains largely under-explored in drug dis-
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covery. To the best of our knowledge, only Lee et al. (2022)
have explored few-shot regression in drug discovery, by ap-
plying an Attentive Neural Process (ANP, Kim et al. (2019)),
a variant of neural processes, to the task. However, many
design choices in ANPs are not tailored to compound activ-
ity prediction, including their probabilistic framing and lack
of unknown compound encoding, which we will show leads
to poor performance. Lee et al. (2022) also perform very
limited comparison with other few-shot learning methods,
and only measure model performance on a single dataset.

In summary, our contributions include

• designing a novel few-shot learning model, FS-CAP,
that builds on existing neural process designs but with
several important architectural and training changes
that are specific to drug prediction considerations,

• introducing several new datasets and settings to the
problem of few-shot compound activity regression that
mimic the drug discovery challenges of hit and lead op-
timization, high-throughput screening, and anti-cancer
drug activity prediction, and

• showing that FS-CAP outperforms both traditional
chemical similarity techniques and modern deep
learning-based few-shot learning techniques on this
robust set of datasets.

2. Related Work
We discuss the related work in compound activity prediction
and then summarize few-shot learning and its applications
to target-free compound activity prediction.

Compound activity prediction. Much work focuses on
the prediction of compound activities using knowledge of
a protein target (e.g. Öztürk et al. (2018); Somnath et al.
(2021); Ragoza et al. (2017); Stepniewska-Dziubinska et al.
(2018); Jones et al. (2021)), but such information is not
always available in practice (Haasen et al., 2017; Swinney
& Lee, 2020). In the target-free, or “ligand-based” set-
ting, our aim is to use existing compounds (the “context
set”) to predict the activity of unknown compounds (the
“query set”) against new assays. A common computational
chemistry technique for this task is to measure chemical
similarity between the context compound(s) and each com-
pound in the query set. This is often performed with binary
fingerprints (e.g. Rogers & Hahn (2010)), although such
structure-based similarity can miss compounds with similar
activity but different chemical scaffolds. Therefore, more
complex chemical descriptors may also be used, such as
polarity, molecular topology, and 3D shape (Khan et al.,
2016; Li et al., 2012; Kohlbacher et al., 2021; Kearnes &
Pande, 2016).

Machine learning techniques derive molecular representa-
tions in a data-driven fashion and thus promise to improve
the quality of similarity measurements that use these repre-
sentations. Much work focuses on the unsupervised learn-
ing of molecular representations that can later be used for
downstream tasks such as the assessment of compound sim-
ilarity (Jaeger et al., 2018; Huang et al., 2021; Li & Jiang,
2021; Morris et al., 2020). Due to their unsupervised nature,
however, similarity measurements between the learned em-
beddings are not necessarily useful for activity prediction.

Few-Shot Learning. Few-shot learning is a framework
that enables a trained model to generalize to new domains
(Wang et al., 2020). Common techniques include metric-
based, optimization-based, and model-based approaches.

Metric-based methods use a learned metric space that is
trained specifically to reflect activity differences, as opposed
to unsupervised similarity-based methods. Altae-Tran et al.
(2017) propose an LSTM-based method to iteratively update
context compound embeddings, which are used to compute
a similarity metric. Schimunek et al. (2021) learn a Siamese
network-like embedding for compounds in a metric space.
The well-known prototypical network (Snell et al., 2017)
and matching network (Vinyals et al., 2016) techniques
have also been proposed for use on molecular graphs (Ding
et al., 2020; Vella & Ebejer, 2022). However, these tech-
niques only measure similarity between discrete classes
(active/active), and cannot use continuous labels. This is
problematic when the difference between weakly and highly
active compounds is critical, therefore reducing the real-
world applicability of such techniques (Stanley et al., 2021;
Lee et al., 2022; Lenhof et al., 2022; Joo et al., 2019). In-
deed, one of the main challenges of drug discovery is to
optimize weakly active compounds into highly active ones
(Hughes et al., 2011), yet binary methods like the ones above
can make no such distinction.

Optimization-based techniques use gradients computed on
the context set to adapt the weights of a “base” model,
and then apply this adapted model to the query set. Tech-
niques in this area include the LSTM meta-learner (Ravi &
Larochelle, 2016), which uses a separate “learner” network
to adapt the weights of the main network. Nguyen et al.
(2020) proposed the use of model-agnostic meta-learning
(MAML, Finn et al. (2017)) for few-shot binary compound
activity prediction, which finds a set of model parameters
that can most quickly be fine-tuned to new tasks.

Instead of updating network weights during test time, model-
based approaches take both the query and context set as in-
puts to a single model. For example, MetaNets (Munkhdalai
& Yu, 2017) use a memory module coupled with both a base
and meta-learner to generate network weights adapted to
a new task. Another method, Non-Gaussian Gaussian Pro-
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cesses (NGGPs, Sendera et al. (2021)), expands on previous
approaches (Tossou et al., 2019; Rothfuss et al., 2021) that
use GPs for few-shot learning by parameterizing the Gaus-
sian posterior with a normalizing flow. However, neither the
optimization-based nor the model-based techniques have
been applied to few-shot compound activity regression.

Neural processes (NPs, Garnelo et al. (2018b)), as well as
their variants like attentive neural processes (ANPs, Kim
et al. (2019)), combine GPs and neural networks for few-
shot learning. To the best of our knowledge, the prediction
of continuous compound activity values in the few-shot set-
ting has been explored only once in the literature using the
ANP-based MetaDTA (Lee et al., 2022). However, they
include a limited number of experimental settings and base-
line comparisons to other few-shot learning models. We
propose a novel architecture with some similarity to neural
processes but with several important modifications tailored
to the prediction of compound activities, and perform a more
rigorous comparison across multiple datasets.

3. Methodology
We cast the problem of compound activity prediction in new
assays given known compounds as a few-shot regression
task. To address this problem, we introduce FS-CAP, which
is summarized in Figure 1.

Problem statement. We seek to predict the activity of a
“query” compound in a new assay, given only a small set of
“context” compounds and their activities in the same assay.

Mathematically, suppose our training dataset consists of K
different assays. Each assay k consists of N different com-
pounds that are measured against it, Mk := {m1, · · · ,mN}.
The experimentally measured activity of a molecule m
against an assay k is defined as πk(m) ∈ R. In training,
we take a query molecule mq that is an element of some
Mk and aim to predict its activity πk(mq). To aid in pre-
diction, we randomly sample n context examples from the
same assay, Ck = {(mi, πk(mi))}ni=1, where each mi is
randomly sampled from Mk. n must be ≤ N , and typically
it is a small number, hence few-shot. Then, we train the
model f to predict the activity of the query molecule given
the context set, i.e. f(mq, Ck) = π̂k(mq) ≈ πk(mq).

In testing, our model has a similar task, which is to predict
the activity of a query molecule given some context set.
However, the query and context set come from an assay
not seen in training, meaning we measure the ability of the
model to adapt its predictions to an unseen assay.

Architecture. We employ two separate encoders, a query
encoder fq and a context encoder fc. Consider a single
assay k. We encode the query molecule mq ∈ Mk and

elements of the context set (mi, πk(mi)) ∈ Ck as follows:

fq : mq 7→ xq, fc : (mi, πk(mi))) 7→ ri (1)

where ri is a representation of the i-th context example. The
query encoder learns to encode the query molecule into a
representation xq, that is useful for predicting its activity.
The context encoder learns to capture some information
about assay k from each example in the context set. To
aggregate each individual context encoding ri into a single
real-valued vector xc that represents the context set as a
whole, we take the average across each ri:

xc =
1

n

n∑
i=1

ri. (2)

This maintains permutation invariance, as desired, since the
order of the contexts should not affect their encoding. More
complex aggregation techniques, such as self-attention, did
not lead to improved performance (Table 6).

The predictor network g combines both encodings to gener-
ate an activity prediction for the query molecule:

g : xc ⊕ xq 7→ π̂k(mq) (3)

where ⊕ denotes vector concatenation.

We represent molecules using their 2048-bit Morgan fin-
gerprints (Rogers & Hahn, 2010). fc, fq, and g are all
multilayer perceptrons with ReLU activations. To pass both
the context compound and its measured activity value to fc,
we multiply the measured activity scalar with the Morgan
fingerprint. Specifically, fc receives the following vector:

Morgan(mi) · πk(mi) (4)

Since Morgan fingerprints are substructure-based, i.e. each
element in the vector has a 1 bit if there is a certain substruc-
ture present and 0 otherwise, and substructures are known
to contribute directly to binding characteristics, this featur-
ization may make it easier for the model to learn which
substructures contribute how much to activity. We later
confirm this intuition by comparing our proposed multipli-
cation approach with the more traditional concatenation of
fingerprint and activity values (Table 6).

Differences to neural processes. Although our architec-
ture builds on neural processes (NPs, Garnelo et al. (2018b))
and attentive neural processes (ANPs, Kim et al. (2019))
such as MetaDTA (Lee et al., 2022), it differs in several im-
portant aspects that are specific to the few-shot compound
activity regression task. First, both NPs and ANPs are based
upon a probabilistic framework, which would theoretically
allow for the prediction of a distribution of possible activ-
ities for a given compound. However, such distributions
are not very relevant in drug discovery, where one almost
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Figure 1. Overview of the FS-CAP architecture. The context encoder (left) receives the Morgan fingerprint of each context compound
multiplied by its associated activity value. A final context encoding is produced by aggregating the individual encodings of each context
compound. The query encoder (right), which has different weights, receives the Morgan fingerprint of the query compound. A predictor
network receives the concatenated outputs of each encoder and produces a final scalar activity prediction of the query compound.

always works with point estimates of compound activity
except perhaps in the special case of compound toxicity
(Lazic & Williams, 2021). Avoiding a probabilistic frame-
work stabilizes training, and allows us to simply minimize
the mean squared error loss.

Second, NPs and ANPs do not perform query encoding,
meaning the query features are fed directly along with the
context embedding to the predictor network. However, in
drug discovery, there are useful query features that may
be extracted entirely independently of any assay, such as
compound shape and electrostatics. Allowing the model
to encode the query compound in a distinct query encoder,
prior to receiving any assay information, is a novel step that
appears to improve prediction performance over baselines
that use no such encoding (Table 6).

Third, instead of concatenating the features of the context
compound with its activity value, as in NPs or ANPs, we
multiply the two before feeding into the context encoder,
as described above. This novel featurization, which is only
possible due to the unique binary nature of molecular finger-
prints and the scalar nature of the activity value, appears to
be more effective than concatenation (Table 6).

Training. We use a large assay dataset for training, but set
aside some of these assays for testing. We train the model
in an end-to-end fashion with Mean Squared Error (MSE),
with the loss for each epoch defined as

L =
1

K

K∑
k=1

(
1

N

N∑
i=1

(πk(mi)− π̂k(mi))
2

)
(5)

where each mi ∈ Mk is a query molecule.

4. Experiments
4.1. Tasks

We use four different datasets (Table 1) to test FS-CAP and
baseline methods on three tasks related to drug discovery.

• Hit and lead optimization: In this scenario, one
wishes to use knowledge of a few compounds with
modest experimentally determined activities in a bind-
ing or phenotypic assay to predict the activities of ad-
ditional candidate compounds. For this task, we train
and test all methods on the BindingDB and PubChem
BioAssay (PubChemBA) datasets, which contain con-
tinuous activity values across many different assays.

• High-throughput screening: In high-throughput
screening (HTS), large numbers of compounds are
assayed to provide a binary active/inactive label. In
this scenario, one again has knowledge of a few com-
pounds with modest activities in an assay of interest,
but now the goal is to classify a large number of can-
didate compounds as active or inactive in the assay.
Success in this task would provide the ability to use a
small amount of data to guide the selection of a com-
pound library for HTS that will have an enhanced frac-
tion of novel actives than a library of randomly chosen
compounds. To model this task, we train all methods
on the PubChemBA dataset, but treat their outputs as
unnormalized probabilities to compute binary classifi-
cation metrics. We test all methods on the PubChem
High-Throughput Screening (PubChemHTS) dataset,
which contains binary activity classifications for com-
pounds in PubChem assays marked as “Screening.”
This dataset contains an entirely separate set of assays
from the continuous ones of PubChemBA.

• Anti-cancer drug activity prediction: We explore
whether a model trained on the PubChemBA dataset
generalizes to the prediction of compound activity
against cancer cell lines. For this task, we use the
Cancer Cell Line Encyclopedia (CCLE), which con-
tains IC50 measurements for 24 drugs against 275
patient-derived cancer cell lines. We further probe the
biological understanding of the trained models with
additional challenges on this dataset involving the gen-
erated context encodings.
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Table 1. Summary of datasets. We report the number of assays in each dataset, the number of these assays excluded from training and
used for testing, and the number of unique compounds present across all assays in the dataset. We also report the source and access date
of the dataset, if applicable.

UNIQUE
DATASET TOTAL ASSAYS TEST ASSAYS COMPOUNDS SOURCE DATE

PUBCHEM BIOASSAYS
(PUBCHEMBA) 98,593 1,000 1,108,355 WANG ET AL. (2012) 18 DEC. 2022
BINDINGDB 4,807 100 1,013,354 GILSON ET AL. (2016) 1 DEC. 2022
CANCER CELL LINE
ENCYCLOPEDIA (CCLE) 275 275 24 BARRETINA ET AL. (2012) N/A
PUBCHEM HIGH-THROUGHPUT
SCREENING (PUBCHEMHTS) 100 100 34,716 WANG ET AL. (2012) 23 DEC. 2022

We defer further dataset and preprocessing details to Ap-
pendix A. We also include additional experimental results
on the FS-Mol dataset (Stanley et al., 2021) in Appendix C.
For all datasets, assay data were expressed as log10 of the
activity in nanomolar (nM) units.

4.2. Baselines

As baselines for comparison, we include Tanimoto fin-
gerprint similarity (a widely used traditional technique
from computational chemistry) and several state-of-the-
art approaches in few-shot learning. We applied both
optimization-based (MAML, Finn et al. (2017)) and model-
based (MetaNet, Munkhdalai & Yu (2017); ANP, Kim et al.
(2019)) methods to the regression of compound activities.
We omit similarity-based methods (e.g. Snell et al. (2017);
Vinyals et al. (2016)) as they require binarizing the activ-
ity data of the context compounds, making for an unfair
comparison. Details on the training and implementation of
FS-CAP and baselines are reported in Appendix B.

• Tanimoto similarity. Traditional molecular structure-
based similarity measure based on binary Morgan fin-
gerprints (Rogers & Hahn, 2010; Bajusz et al., 2015).
When given multiple context compounds, we use the
highest similarity score between each of the contexts
and the query.

• MolBERT + attentive neural process (ANP). Com-
bines MolBERT, which is a start-of-the-art sequence-
based molecular featurizer for property prediction tasks
(Li & Jiang, 2021), with an attentive neural process
model (Kim et al., 2019) for the few-shot prediction of
activity values.

• Non-Gaussian Gaussian process (NGGP) (Sendera
et al., 2021). Expands on basic Gaussian process tech-
niques for few-shot learning by modeling the posterior
distribution with an ODE-based normalizing flow.

• MetaNet (Munkhdalai & Yu, 2017). Uses two separate
learners, the base learner and the meta-learner which

utilizes a memory mechanism, to quickly adapt to new
tasks in the few-shot setting via fast parameterization.

• Model-agnostic meta-learning (MAML) (Finn et al.,
2017). Learns a model that can quickly adapt to a new
task by training on a small set of context examples. For
this paper, we use a simple multilayer perceptron that
takes a Morgan fingerprint as input for the base model.

• MetaDTA (Lee et al., 2022). Applies attentive neural
processes to the few-shot regression of continuous ac-
tivity values. We use the MetaDTA(I) variant because
its performance is superior to that of the other reported
variants.

4.3. Hit and lead optimization

To explore the applicability of few-shot learning methods to
the hit and lead optimization settings, we compare FS-CAP
with baseline methods on the few-shot prediction of com-
pound activity values against assays in PubChemBA and
BindingDB. Compounds with high activity are often not
known at the hit stage, so we only sampled context com-
pounds (in both training and testing) that have activity values
(i.e. effective concentrations) > 10 µM , which is typical of
hit compounds (Zhu et al., 2013). Note that a higher effec-
tive concentration means lower activity. Following training,
we test each method against the assays in the held-out test
set. Thus, each test set compound was treated as a query
compound, with each query being used with a context set
of 1-8 compounds randomly sampled from all compounds
against the same assay as the query.

Table 2 reports the mean correlation of the predicted and
ground truth activity values across all test-set assays for
each method. Pearson’s correlation coefficient measures
the ability of each method to differentiate between com-
pound activities against the same assay and is a standard
metric in the literature (Jones et al., 2021; Wang et al., 2021).
Other metrics, such as MSE, may appear favorable even if
a method makes the same prediction for all compounds
against a given assay.
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Table 2. Average per-assay correlation. Mean Pearson’s r between predicted and ground-truth compound activity values across all
test-set assays in PubChemBA and BindingDB. To mimic a hit/lead optimization task, where compounds with high activity are not known,
we only sampled context compounds with > 10 µM activity values. For each method, a separate model was trained on each dataset and
for each different number of context compounds. We report the mean ± one standard deviation from three independent training runs with
random seeds for the top three baselines. Due to computational constraints, we report results for all other baselines from one training run.

DATASET PUBCHEMBA BINDINGDB
# CONTEXT COMPOUNDS 1 2 4 8 1 2 4 8

TANIMOTO SIMILARITY 0.01 0.13 0.21 0.27 -0.08 0.05 0.13 0.18
MOLBERT + ANP -0.01 0.23 0.22 0.17 0.09 0.10 0.10 0.12
NGGP 0.17 0.20 0.25 0.30 0.12 0.17 0.17 0.18
METANET 0.02 0.05 0.06 0.02 0.06 -0.01 0.05 0.09
MAML 0.39±0.00 0.39±0.01 0.39±0.00 0.41±0.00 0.34±0.02 0.35±0.02 0.36±0.00 0.36±0.00

METADTA 0.44±0.00 0.45±0.00 0.45±0.00 0.45±0.01 0.36±0.01 0.36±0.00 0.35±0.00 0.34±0.01

FS-CAP 0.48±0.01 0.48±0.01 0.49±0.00 0.49±0.01 0.38±0.01 0.38±0.00 0.38±0.02 0.39±0.01

Table 3. Average ROC-AUC and enrichment statistics across
all high-throughput screening assays. ROC-AUC measures the
ability of each method to classify compounds as active or inactive.
Each percentage value indicates the k% enrichment. 8 context
compounds were used. We report the mean (± one standard devia-
tion for ROC-AUC) from three independent training runs on the
PubChemBA dataset with random seeds for the top three baselines.

METHOD ROC-AUC 0.5% 1% 2%

TANIMOTO SIMILARITY 0.51 76% 98% 120%
MOLBERT + ANP 0.51 160% 130% 130%
NGGP 0.49 150% 110% 95%
METANET 0.49 100% 110% 120%
MAML 0.51±0.01 210% 150% 150%
METADTA 0.55±0.00 160% 150% 140%

FS-CAP 0.57±0.00 200% 190% 180%

As shown, FS-CAP consistently outperforms Tanimoto sim-
ilarity, the de facto standard in medicinal chemistry, as well
as deep learning-based few-shot learning baselines, across
datasets and for different numbers of context compounds.
This suggests that FS-CAP may be useful for hit and lead
optimization, as it is the most successful in predicting the
activities of unknown compounds using only weakly active
context compounds. Similar results were obtained when we
performed the same study without any limit on the context
compound activities, except that the correlation coefficients
were higher by about 0.10 (Appendix C). We used the ver-
sion of the PubChemBA model trained without any context
activity limits for Sections 4.4 and 4.5.

4.4. High-throughput screening

We evaluated the performance of FS-CAP and baseline
methods on the few-shot prediction of compound activi-
ties in high-throughput screening (HTS) assays from Pub-
ChemHTS (Table 3). While the activity data for a given HTS
assay are binary compound labels, more detailed confirma-
tory (dose-response) studies are often available for selected

hit compounds, which can provide context compounds with
continuous activity values. In this task, we obtained con-
text compounds via separate dose-response assays not in
PubChemHTS, but with the same targets as PubChemHTS
assays (see Appendix A for details).

For this task, we train all models on PubChemBA. While the
models predict a continuous activity value for each query
compound, we treat their outputs as unnormalized proba-
bilities (that were inverted, because a low effective concen-
tration corresponds to a high activity), so that classification
metrics may be computed from the model output. In other
words, we assumed that a high continuous compound activ-
ity prediction from the models corresponded to an “Active”
classification, and vice-versa. Specifically, we measured
performance through ROC-AUC using the ground-truth bi-
nary activity labels, a standard metric in the HTS literature
(Triballeau et al., 2005). We also measured performance
with k% enrichment, which is the percent increase of actives
over the base rate in the top k% of scored compounds, also
a standard metric in the HTS literature (Lopes et al., 2017).

We find that FS-CAP outperforms baselines both in ROC-
AUC and in most enrichment measurements (Table 3). This
suggests that FS-CAP is more capable of predicting com-
pound activities in screening libraries than baseline methods,
and maybe the most effective at raising the hit rate of a li-
brary selected from a much larger set of compounds to
perform more targeted and cost-effective testing.

4.5. Anti-cancer drug activity prediction

In this task, we train all models on PubChemBA and test
them on the prediction of anti-cancer drug activities against
patient-derived cancer cell lines in the Cancer Cell Line
Encyclopedia (CCLE, Barretina et al. (2012)). Context
compounds were randomly sampled from all compounds
with activity data against a given cell line, and were used
to predict the activities against the same cell line of query
compounds not in the context set. We report the mean cor-
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Table 4. Average correlation per cell line. Mean Pearson’s r between ground truth and predicted drug activity values across all cell lines
in the CCLE. Experiments were performed using 1, 2, 4, and 8 context compounds for each method tested. We report the mean ± one
standard deviation from three independent training runs on the PubChemBA dataset with random seeds for the top three baselines.

# CONTEXT COMPOUNDS 1 2 4 8

TANIMOTO SIMILARITY 0.17 0.28 0.33 0.36
MOLBERT + ANP 0.04 0.11 -0.13 0.07
NGGP 0.12 0.18 0.25 0.32
METANET -0.25 0.39 0.22 -0.04
MAML 0.50±0.05 0.45±0.04 0.47±0.04 0.17±0.03

METADTA 0.52±0.03 0.49±0.03 0.51±0.02 0.39±0.03

FS-CAP 0.58±0.02 0.56±0.03 0.51±0.03 0.46±0.03

Table 5. Accuracy of cell line identification using context en-
codings. Accuracy scores of logistic regression models trained to
classify the cell line based on context encodings generated by each
method pretrained on PubChemBA. We included 20 randomly
chosen cell lines, and performed 15 trials for each cell line and a
number of context compounds, where a trial consisted of encod-
ing randomly sampled context compounds and their associated
activities. We trained a separate logistic regression classifier for
each method and number of context compounds using 80% of the
available encodings, and computed the reported accuracy scores on
the remaining 20%. A random classifier would have 5% accuracy.

# CONTEXT COMPOUNDS 1 2 4 8

METADTA 5% 8% 10% 27 %
FS-CAP 24% 39% 56% 81%

relation between predicted and experimentally determined
IC50 values for drugs across all cell lines.

As shown in Table 4, FS-CAP is better than the base-
line methods at predicting the phenotypic activities of anti-
cancer drugs. Although the number of compounds tested
in the CCLE is relatively small, the success of FS-CAP
in predicting activity values in this dataset, despite being
trained only on PubChemBA, suggests that it may learn
fundamental relationships between compounds and assays
that generalize across datasets.
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Figure 2. t-SNE visualization of context encodings, colored by
cell line, generated by (a) FS-CAP and (b) MetaDTA. Each dot
represents one context encoding using 8 randomly sampled context
compounds and their associated activities against a given cell line.
The color of the dot represents the cell line.

We further explored the properties of FS-CAP’s trained
context encoder using a new classification task. Here, the
input was a set of context compounds and their activities
against a given cell line, and the output was a prediction
of which cell line these activities correspond to. For this
task, we applied a simple logistic regression classifier on
top of the context encoding generated by FS-CAP (i.e. xc).
For comparison, we apply a similar approach to the latent
path prior of MetaDTA (z in Lee et al. (2022)), our most
competitive baseline (Table 4).

We randomly selected 20 cell lines in the CCLE. For each
of the 20 cell lines and for each number of context com-
pounds, we conducted 15 trials, where each trial consisted of
randomly sampling context compounds and their activities
against the cell line. As not all compounds have measured
activities against all cell lines in the CCLE, we only sampled
contexts from the 15 compounds that have experimental ac-
tivities measured against all 20 cell lines. This prevents
the logistic regression classifier from simply learning which
compounds were tested against which cell lines. For train-
ing the classifier, we used a random 80/20 train/test split,
where 80% of the context encodings and their associated
cell lines were used to train the model and the remaining
20% were used to judge its accuracy.

As shown in Table 5, the classifier trained on top of FS-CAP
significantly outperforms that of MetaDTA on the test set,
suggesting that the context encodings generated by FS-CAP
are more meaningful. In addition, Figure 2 shows the t-SNE
(Van der Maaten & Hinton, 2008) projections of the context
encodings generated by FS-CAP (left panel) and MetaDTA
(right panel) using 8 context compounds. The encodings
of FS-CAP appear to cluster by cell line (indicated by col-
ors), while the corresponding projections of the MetaDTA
encodings appear more scattered, helping to explain the
high accuracy of the linear regression classifier trained on
FS-CAP. Such clustering signifies that FS-CAP is able to
produce similar encodings of context compounds when their
associated activities are derived from the same assay, even
if the identity of the context compounds themselves vary.

Particularly interesting is that such clustering is observed
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Table 6. Model ablations. We measure the mean correlation be-
tween ground-truth and predicted activities across all test assays
in PubChemBA and BindingDB using 8 context compounds. We
report the mean ± one standard deviation from three independent
training runs with random seeds.

ABLATION PUBCHEMBA BINDINGDB

BASE MODEL (FS-CAP) 0.54±0.01 0.48±0.00

NO QUERY ENCODING 0.53±0.00 0.46±0.01

CONCATENATED CONTEXT 0.53±0.00 0.45±0.00

NO CONTEXT 0.48±0.00 0.40±0.00

ATTENTIVE AGGREGATION 0.51±0.01 0.30±0.01

on the cell line dataset despite having been trained on the
nonoverlapping PubChemBA dataset. This suggests that
training on large assay datasets allows for the extraction of
biologically relevant information on how functional drug
responses relate to the unique aspects of various cancer cell
lines, e.g. type of cancer or mutations present. Along with
Table 5, these results help explain the observed superior
performance of FS-CAP for compound activity prediction,
as a meaningful encoding of assay information is a neces-
sary first step towards predicting the activity of unknown
compounds against that assay.

4.6. Model ablations

We report performance metrics of model ablations to the
FS-CAP architecture in Table 6. For each ablation, we
trained the model and then measured the mean correlation of
the predicted and ground truth activity values across all test-
set assays in PubChemBA and BindingDB. This experiment
is similar to that presented in Section 4.3, except context
compounds are selected at random and not constrained by
their activity. 8 context compounds were used for all tests.

We test the significance of using a separate query encoder
network (“Base model”), or feeding the query features di-
rectly to the predictor network (“No query encoding”), sim-
ilar to a typical neural process model. The greater perfor-
mance of the variation with the query encoder suggests that
encoding the query independent of assay information is
beneficial for prediction.

“Concatenated context” means that we feed the context en-
coder a binary compound fingerprint concatenated with its
associated activity value, instead of multiplying the two.
This is similar to a neural process model. This variation
shows inferior performance, suggesting that combining the
context compound fingerprint and activity value scalar via
multiplication is a useful featurization for the activity predic-
tion task. “No context” denotes that no context was fed to
the model at all, and it made activity predictions based solely
on the query compound. “Attentive aggregation” means that
we applied 4-layer self-attention on the individual context

encodings before taking the mean.

5. Discussion and Conclusions
The proposed few-shot learning model FS-CAP surpasses
both a standard chemical similarity metric and prior few-
shot learning baselines in multiple tasks of interest in early
stage drug discovery. These tasks include prediction of
compound activities based on a set of weak-binding context
compounds, prediction of screening library compounds as
active or inactive, and prediction of antitumor activity in
cell-based assays, all performed with models trained on
large activity datasets. Together, these results suggest that
FS-CAP may be broadly useful for target-free, or ligand-
based, drug discovery, which has become more common in
recent years in comparison to target-based drug discovery
that uses protein information (Haasen et al., 2017; Swinney
& Lee, 2020).

FS-CAP may already be useful in its present form as a
tool to leverage the limited compound activity data that is
typically available in the earliest stages of drug discovery,
focusing attention on candidate compounds that are much
more likely than randomly chosen compounds to be ac-
tive in an assay of interest. It thus offers a novel approach
to speed drug discovery and reduce its costs. Exploring
the use of FS-CAP for other compound properties might
open further applications. For example, it may find applica-
tions in predicting pharmacokinetic parameters of candidate
compounds, such as bioavailability and half-life; metabolic
susceptibility; and toxicity.

Limitations of the present implementation of FS-CAP in-
clude its use of a relatively simple molecular representation
(Morgan fingerprints), and a context aggregation technique
with limited expressiveness. Additionally, the inherent limi-
tations of training on experimental assay data, such as the
limited tested dose range (Stanley et al., 2021) or system-
atic biases in which compounds are tested against which
targets, may limit the applicability of few-shot methods
like FS-CAP trained on these datasets to real-world drug
discovery projects.

Future developments could include the exploration of more
complex molecular representations (e.g. sequence or graph-
based) and the application of more complex context aggrega-
tion methods beyond the mean. Finally, research into incor-
porating target information, when available, with few-shot
methods may allow for increased prediction accuracy be-
yond using target information or context compounds alone.
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A. Dataset details
A.1. PubChemBA and BindingDB

We trained on PubChemBA (Wang et al., 2012) and BindingDB (Gilson et al., 2016) for their size, high quality, and broad
coverage across many targets and assays. For both datasets, we excluded very small or very large molecules, defined as
less than 10 atoms or more than 70. From BindingDB, we recorded activities in nanomolar units from either the KD, Ki,
IC50, or EC50 columns, if available. Similarly, we used the PubChem “activity value”, which can be any dose-response
activity value (either target-based or phenotypic), normalized to nanomolar units. We used such a broad range of different
activity types because all values are similarly determined by an underlying binding mechanism, it increased the amount of
data we can train on, and allowed the trained models to generalize to both target-based and phenotypic data types. If no
continuous activity value was available for a given molecule, we discarded it. When activity was expressed as an upper or
lower bound, we took the bound itself as the known activity. To reduce outlier activity values, we also clipped activity values
with log10 nM values of < −2.5 or > 6.5, as values surpassing those limits were rare. Then, we excluded all assays that
include less than 10 measured compounds. Assays were defined via protein sequence in BindingDB (although some protein
targets may contain data aggregated from multiple experimental assays), and by bioassay (i.e. AssayID) in PubChemBA.
We transformed all activity values using the base-10 logarithm, as activity often spans several orders of magnitude.

BindingDB data was taken directly from the file BindingDB All.tsv (https://www.bindingdb.
org/rwd/bind/chemsearch/marvin/SDFdownload.jsp?download_file=/bind/downloads/
BindingDB_All_2D_2023m0.sdf.zip). PubChemBA data was downloaded via the FTP interface
(https://ftp.ncbi.nlm.nih.gov/pubchem/Bioassay/Concise/JSON/). For each row in the down-
loaded files, the activity value was taken from the PubChem Standard Value column, and the SubstanceIDs
were converted into corresponding SMILES strings via the files available at https://ftp.ncbi.nlm.nih.gov/
pubchem/Substance/CURRENT-Full/SDF/.

A.2. Cancer Cell Line Encyclopedia

The Cancer Cell Line Encyclopedia (Barretina et al., 2012) consists of interaction data of 24 drugs against a wide array of
479 patient-derived cancer cell lines. For this paper, we used the dataset reported in Table S11 of Barretina et al. (2012), and
extracted IC50 measurements for each drug measured against each cell line. We excluded compounds with less than 10 or
more than 70 atoms, and cell lines with less than 10 drugs with measured activity. We also excluded all compound-activity
pairs if there was no continuous activity value reported.

A.3. PubChemHTS

Starting with a list of Assay IDs (AIDs) obtained from the search function at https://pubchem.ncbi.nlm.nih.
gov/, we downloaded the top 100 AIDs with the highest number of tested substances with “BioAssay Type” equal to
“Screening” and a linked “Protein Target” section in the “BioAssay Record.” For each linked protein in a given Screening
assay, we obtained continuous activity values to be used as context compounds via the protein’s “Chemicals and Bioactivities”
section in PubChem. As we used these compounds and their activities for context compounds in our experiments, we
excluded all proteins, and therefore assays, with less than 10 tested compounds with continuous activity values. After
obtaining the context compounds, we downloaded the datatable for each assay, which contained Compound IDs (which were
linked to SMILES strings, to be used as query compounds in our tests, via the PubChem API) and binary compound activity
classifications (“Active” or “Inactive” in the datatable file, to be used for computing ROC-AUC and enrichment scores).

B. Implementation details
Unless specifically stated, all baselines were trained with the same molecular representation (2048-bit Morgan fingerprints
with a radius of 3). For FS-CAP and all baseline methods, we tuned hyperparameters once for each model in the PubChemBA
task discussed in Section 4.3 using 8 context compounds, except without limiting the context activity range, and used the
same hyperparameters for all other datasets and subsequent tasks. For all methods, the reported model performance in each
experiment is measured after 227 query molecules had been seen in training, or until the average Pearson’s r across all
test assays stopped improving on PubChemBA with 8 context compounds. A grid search was performed for all sets of
hyperparameters, which are listed below for each model (with the best hyperparameters bolded, according to the highest
Pearson’s r). All models were trained on a server with 8 NVIDIA GTX 3080 GPUs.

https://www.bindingdb.org/rwd/bind/chemsearch/marvin/SDFdownload.jsp?download_file=/bind/downloads/BindingDB_All_2D_2023m0.sdf.zip
https://www.bindingdb.org/rwd/bind/chemsearch/marvin/SDFdownload.jsp?download_file=/bind/downloads/BindingDB_All_2D_2023m0.sdf.zip
https://www.bindingdb.org/rwd/bind/chemsearch/marvin/SDFdownload.jsp?download_file=/bind/downloads/BindingDB_All_2D_2023m0.sdf.zip
https://ftp.ncbi.nlm.nih.gov/pubchem/Bioassay/Concise/JSON/
https://ftp.ncbi.nlm.nih.gov/pubchem/Substance/CURRENT-Full/SDF/
https://ftp.ncbi.nlm.nih.gov/pubchem/Substance/CURRENT-Full/SDF/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
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B.1. FS-CAP

FS-CAP was implemented in PyTorch. We used an Adam optimizer with a base learning rate of 10−5 and 128 steps for
learning rate warmup, and then cosine annealed the learning rate to 0 over all training steps. We used dropout (p = 0.1) and
batch normalization following each layer in the predictor network (except in the last 2 layers), while the encoder networks
used neither.

Hyperparameters: learning rate={1e-4, 5e-4, 1e-5, 5e-5, 1e-6 5e-6}, batch size={512,
1024}, encoding dim={256, 512}, n layers={4, 5, 6}, mlp width={2048}. We used the same
number of layers, n layers, and width of layers, mlp width, in both the context encoder, query encoder, and predictor
networks.

B.2. Tanimoto similarity

We used 2048-bit Morgan fingerprints with a radius of 3 for the calculation of Tanimoto similarity. When using multiple
context compounds, we calculate the Tanimoto similarity between each context compound and all query compounds, but
only use the highest similarity context compound for each query compound. This is because if a query compound is similar
to one of, but not all, the known actives (the context set), it is still presumed to be active.

B.3. MolBERT + ANP

We used the pretrained MolBERT model available from https://github.com/BenevolentAI/MolBERT to en-
code SMILES strings into a 768-dimensional vector. We then used this featurizer (which was not made trainable) in an
attentive neural process architecture to represent the context and query features, xi and x∗, respectively (Kim et al., 2019).
We re-implemented the attentive neural process architecture in PyTorch, following the original paper (Kim et al., 2019) and
their published code (https://github.com/deepmind/neural-processes/blob/master/attentive_
neural_process.ipynb) as closely as possible. We trained the model using an Adam optimizer with a base learning
rate of 10−5 and 128 steps for learning rate warmup, and then cosine annealed the learning rate to 0 over all training steps.

Hyperparameters: learning rate={1e-4, 1e-5, 1e-6}, batch size={512, 1024, 2048},
num attention heads={2, 4, 8}, encoding dim={256, 512}, decoder layers={4, 5, 6},
mlp width={2048}. We use the same encoding dim for both the determinstic and latent paths.

B.4. NGGP

We used the official PyTorch implementation of NGGP available at https://github.com/gmum/
non-gaussian-gaussian-processes. Using the existing code available for the QMUL dataset, we modi-
fied the datalaoders for our task by outputting 2048-bit Morgan fingerprints. We trained only two separate models, one for
BindingDB and one for PubChemBA, because the size of the context set is only relevant at test time. We also expanded the
MLP2 model used in the code to more layers, so the number of parameters was about equivalent to other baselines.

Hyperparameters: all lr={1e-2, 1e-3, 1e-4}, meta batch size={5, 10},
update batch size={5, 10}, noise={gaussian, none}, cnf dims={32, 64, 128},
mlp layers={4, 5, 6}, nonlinearity={tanh, relu}, batch norm={True, False},
mlp width={2048}. We used the defaults provided in the code for the QMUL dataset for all other hyperparam-
eters.

B.5. MetaNet

We adapted the Chainer code provided in the official MetaNet implementation (https://bitbucket.org/
tsendeemts/metanet/src/master/) to PyTorch. Most of the architectural choices were kept the same as the
original code, although we changed each Block network to include two 2048-wide linear layers with ReLU nonlinearities so
that the entire model used about the same number of parameters as other baselines. We trained the model using an Adam
optimizer with a base learning rate of 10−5 and 128 steps for learning rate warmup, and then cosine annealed the learning
rate to 0 over all training steps.

Hyperparameters: learning rate={1e-2, 1e-3, 1e-4}, num blocks={4, 5, 6},
mlp width={2048}, hidden dim={512, 1024, 2048}, batch size={8, 16, 32}

https://github.com/BenevolentAI/MolBERT
https://github.com/deepmind/neural-processes/blob/master/attentive_neural_process.ipynb
https://github.com/deepmind/neural-processes/blob/master/attentive_neural_process.ipynb
https://github.com/gmum/non-gaussian-gaussian-processes
https://github.com/gmum/non-gaussian-gaussian-processes
https://bitbucket.org/tsendeemts/metanet/src/master/
https://bitbucket.org/tsendeemts/metanet/src/master/
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B.6. MAML

We used the MAML implementation in the learn2learn library (Arnold et al., 2020). The base model was a simple multilayer
perceptron that takes a 2048-bit Morgan fingerprint as input and produces a single scalar output, which is the activity value
prediction. As in the original MAML paper (Finn et al., 2017), we used an SGD optimizer with a constant learning rate, as
well as applied dropout with p = 0.1 after all layers of the network during training.

Hyperparameters: learning rate={1e-4, 1e-5, 1e-6}, maml learning rate={1e-1, 1e-2,
1e-3}, batch size={512, 1024, 2048}, n layers={6, 7, 8}, mlp width={2048}

B.7. MetaDTA

Since there was no available implementation of MetaDTA, we re-implemented it in PyTorch. For information on the
specifics of the MetaDTA architecture, see Section 3.2 of Lee et al. (2022). The context and query inputs, xi and xq as
described in the paper, were represented with 2048-bit Morgan fingerprints, and the context target yi used the same scalar
activity representation as FS-CAP. As it does not specify in the original paper, similarly to FS-CAP, we used an Adam
optimizer with a base learning rate of 10−5 and 128 steps for learning rate warmup, and then cosine annealed the learning
rate to 0 over all training steps.

Hyerparameters: learning rate={1e-4, 1e-5, 1e-6}, batch size={512, 1024, 2048},
encoding dim={256, 512}, n layers={4, 5, 6}, mlp width={2048}, attention heads={1,
2, 4, 8}. We used the same number of layers, n layers, for the query and context set embedding networks, and the
decoder network. We also used the same number of attention heads, attention heads, for the multi-head cross and
self-attention components of the model.

C. Additional results
C.1. FS-Mol

Table 7. Regression results on FS-Mol. We report the mean ± standard deviation R2
os value across all FS-Mol test tasks, following Chen

et al. (2022).

# CONTEXT COMPOUNDS 16 32 64 128 256

FS-CAP 0.258± 0.022 0.277± 0.021 0.255± 0.030 0.289± 0.026 0.305± 0.028

Table 7 reports results on the few-shot regression of activity values from the FS-Mol dataset (Stanley et al., 2021). While the
original FS-Mol paper does not evaluate methods on the regression task, we use the same experimental setting as Chen
et al. (2022), which is to measure the average task-level out-of-sample coefficient of determination (R2

os) across 10 random
support/query sets. See Chen et al. (2022) for comparison with other methods (they provide performance values in a bar
chart, so we could not obtain the numeric values for this table).

C.2. PubChemBA with no activity constraint

Table 8 reports the same experimental setting as is reported in Section 4.3, except without any constraints placed on the
activity of context compounds. Here, we simply drew context compounds at random, regardless of their activity value. The
models trained on this task using the PubChemBA dataset were applied to the tasks presented in Sections 4.4 and 4.5, as the
tasks presented in those sections similarly do not have activity constraints on the context compounds.
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Table 8. Average per-assay correlation. Mean Pearson’s r between predicted and ground-truth compound activity values across all test-
set assays in PubChemBA and BindingDB. Context compounds are drawn at random without respect to their activity value. Experiments
were performed using 1, 2, 4, and 8 context compounds for each method tested.

DATASET PUBCHEMBA BINDINGDB
# CONTEXT COMPOUNDS 1 2 4 8 1 2 4 8

TANIMOTO SIMILARITY 0.00 0.11 0.20 0.29 -0.04 0.06 0.15 0.18
MOLBERT + ANP 0.09 0.10 0.21 0.17 0.04 0.04 0.06 0.09
NGGP 0.05 0.11 0.24 0.37 0.04 0.06 0.10 0.15
METANET 0.01 0.01 -0.01 0.00 0.02 0.05 -0.01 0.01
MAML 0.40 0.38 0.37 0.38 0.37 0.35 0.35 0.35
METADTA 0.47 0.47 0.49 0.51 0.43 0.43 0.44 0.43

FS-CAP 0.51 0.52 0.54 0.54 0.46 0.48 0.49 0.48


