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ABSTRACT

This technical report investigates variants of the Latent Inceptionism on Molecules
(LIMO) framework to improve the properties of generated molecules. We conduct
ablative studies of molecular representation, decoder model, and surrogate model
training scheme. The experiments suggest that an autogressive Transformer de-
coder with GroupSELFIES achieves the best average properties for the random
generation task.

1 LIMO FRAMEWORK

LIMO (Eckmann et al. (2022)) is a molecular generation technique that improves a given set of
properties by mapping molecules to a latent space and uses inexpensive property surrogates to turn
a discrete space optimization problem into a continuous one. There are multiple components to this
framework which are described below.

1.1 GENERATIVE MODEL

Given a dataset of molecular strings, a generative model is first trained to mimic the distribution
of SELFIES Krenn et al. (2020) tokens, i.e. smallest units of a molecule string. In this case, a
Variational AutoEncoder (VAE) Kingma & Welling (2022), is trained to map molecules (X) to a
latent space (Z) using an encoder (E) i.e. E : X −→ Z and decoder (D) that learns an inverse
mapping i.e. D : Z −→ X , such that it is easy to reconstruct X from Z using the decoder (D)
i.e. D(E(X)) ≈ X (Reconstruction), and the latent space is close to a unit normal distribution i.e.
DKL(z||N (0, I)) ≈ 0 (Regularization).

This defines a generative model p(x) =
∫
p(x|z)p(z). The VAE parameters are obtained by min-

imizing the ELBO loss Kingma & Welling (2022). In this work, we use a variant that weights the
regularization term to avoid a problem during optimization where the KL term vanishes Higgins
et al. (2017).

LBETA(ϕ, β) = −Ez∼qϕ(z|x) log pθ(x | z) + βDKL (qϕ(z | x)∥pθ(z))

β value of 0.1 was used in LIMO (Eckmann et al. (2022)).

1.2 SURROGATE MODEL

LIMO uses a property predictor model to map the molecular representation to property values Eck-
mann et al. (2022). The molecular representation can either be a sample from the latent space or
the decoder output. The property predictor acts as a fully differentiable and faster surrogate model
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to the oracle property predictor tools that are often computationally expensive. The properties are
generally scalar values and thus the parameters of the neural network are learned by minimizing the
mean-squared error between the predictions and oracle property values.

1.3 REVERSE OPTIMIZATION

The key idea of LIMO is the latent inceptionism technique to reverse optimize the latent space
and generate molecules with desired properties. Specifically, a large number of random points are
sampled according to the unit normal distribution in the latent space. These serve as the starting
points for the search. Molecules with the optimized properties are generated by local optimization
in the latent space with the gradient approximated using the trained surrogate model. The overall
objective being optimized is a weighted sum of one or more property values. All of the minima
are then decoded to molecules and the top molecules, measured using the oracle property value
predictor, are chosen.

2 ATTEMPTED MODIFICATIONS TO LIMO

We conduct an extensive ablation study of the LIMO framework, investigating different variations of
LIMO components. These include changes to the tokenization of the molecular strings, the decoding
model from the latent space to the molecule, and changes to how the property predictor is trained.

2.1 MOLECULAR REPRESENTATION

To represent molecules, LIMO used SELFIES Krenn et al. (2020), a molecular string representation
that ensures the tokens can be combined in any way to always form valid molecules. The molecular
strings can be decomposed into tokens in many ways. GroupSELFIES Cheng et al. (2022) builds on
top of the chemical validity guarantees of SELFIES by enabling group tokens, thereby creating
additional flexibility to the representation. It extends SELFIES where the tokens can be larger
fragments and depend on the dataset and the fragmentation technique.

In this work, we use the default fragmentation method from Cheng et al. (2022) with different
datasets:

(1) GS-Paper: GroupSELFIES tokens from the original paper Cheng et al. (2022).

(2) GS-USPTO: GroupSELFIES tokens extracted from USPTO reactions Lowe (2017).

(3) GS-Zinc: GroupSELFIES tokens extracted from ZINC250K molecules Akhmetshin et al.
(2021).

Table 1 shows the total number of tokens, the average and maximum sequence length for each of the
molecular string representations for the training dataset (ZINC 250K) considered in this study.

Table 1: Statistics of different molecular string representation schemes when tokenizing the training
dataset (ZINC250K).

Tokenizer

SELFIES GroupSELFIES
ZINC250K USPTO Paper

Total tokens 108 304 242 248
Max length 72 75 77 93
Avg. length 37.43 37.07 36.61 29.86

2.2 DECODER MODEL

The decoder in LIMO maps from latent space to a molecular string representation. Such mapping
can be approximated in multiple ways. Here we discuss two broad strategies i.e. Non-autoregressive
(NAR) and Autoregressive (AR) decoder models. In this work, both of these are implemented using
the transformer architecture Vaswani et al. (2023).
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2.2.1 NON-AUTOREGRESSIVE MODELS

LIMO Eckmann et al. (2022) uses an MLP decoder by modelling the joint distribution of the target
tokens (y) as conditionally independent i.e. P (y) =

∏n
i=1 P (yi | Z). While this has the advantage

of inference being parallelizable, it suffers from the multi-modality problem Gu et al. (2018). There
have been multiple works that try to mitigate this issue through iterative refinement such as CMLM
Yang et al. (2021), which uses masked language modeling and multi-step decoding. At inference
time, first, the input is fully masked and in each subsequent iteration, the least likely tokens are
masked and the procedure is repeated. A follow-up work CMLMC Huang et al. (2022), aims to
improve the training objective of CMLM by addressing the mismatch at inference by including a
token denoising loss in addition to the masking loss. Another advantage of NAR models is the
ability to do conditional generation by constraining on a given scaffold.

2.2.2 AUTOREGRESSIVE MODELS

Autoregressive models, such as Transformers, are slower since only one token is decoded at each
step and the cost scales at least linearly with the length of the target sequence length. However, the
full joint distribution can be modeled i.e. P (y) =

∏n
i=1 P (yi | y1, ..., yi−1, Z), and thus does not

suffer from the multi-modality problem. AR models thus have been shown to have superior task
performance Ren et al. (2020). In contrast to NAR models, conditional generation is non-trivial,
thus losing the ability to do scaffold-constrained generation.

2.3 SURROGATE MODEL TRAINING

The property predictor surrogate model training depends on the VAE latent space i.e. the input to
the surrogate predictor used in LIMO is a decoded representation of the point in the latent space,
there are two approaches to optimizing the whole system.

The first is to perform the training sequentially, in which case, the VAE is trained to convergence
using the molecular string dataset and then its parameters are frozen. This ensures a fixed latent
space. Random molecules are generated and their property values are computed to create the training
dataset for the neural network-based surrogate.

An alternative strategy is to jointly train both the VAE and the surrogate. In this case, the property
values of the training molecules need to be computed. An advantage of this approach is that the
latent space can be informed of the desired properties explicitly, however, the generative model
optimization becomes harder as there are more training objectives to balance (empirically we find
the losses to be higher) and a lot more oracle compute is required. In this study we chose to use a
surrogate that directly predicts using the latent space to simplify the optimization.

3 EXPERIMENTS

3.1 SETUP

All methods are trained on the ZINC-250K dataset. The parameters are optimized using the Adam
optimizer Kingma & Ba (2017), using a cosine-annealing learning rate schedule for one cycle
Loshchilov & Hutter (2017) for a total of 100K iterations. To prevent KL from vanishing across
models with minimal tuning, a cyclic beta schedule was used while training the VAE Fu et al.
(2019). We follow the LIMO paper and use the following properties to evaluate the quality of gen-
erated optimized molecules.

• SA: Synthetic-accessibility, computed with SAScorer Ertl & Schuffenhauer (2009). A
score between 1 (easy to make) and 10 (very difficult to make).

• QED: Quantitative Estimate of Drug-likeness, estimated by RDKit Landrum. A value
between 0 (non-drug-like) and 1 (drug-like).

• BA: Binding Affinity to the human estrogen receptor (PDB 1ERR), computed with
AutoDock-GPU Santos-Martins et al. (2021). Outputs a prediction of the ∆G in kcal/mol,
with lower values indicating stronger binding. We used 0 when the value could not be
computed.
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Table 2: Property comparison of all generated molecules from different model variants.
Model Variants Count with valid AutoDock BA BA ↓ SA ↓ QED ↑

LIMO

Default-Retrained 9813 -4.67 4.46 0.57
GS-Paper 8729 -5.44 2.89 0.62

GS-USPTO 9947 -5.56 4.46 0.61
GS-Zinc 9868 -5.57 4.63 0.59

AR Default 9194 -5.03 4.93 0.56
Joint-Z 9229 -5.57 3.56 0.76

AR-JointZ
GS-Paper 9768 -5.26 2.91 0.81

GS-USPTO 9939 -5.58 3.28 0.73
GS-Zinc 9967 -5.74 3.39 0.80

CMLMC 8758 -5.11 3.65 0.30

ZINC250K (Training dataset ) 242591 -5.35 3.05 0.73

Figure 1: Distributions of property values for optimized molecules generated by LIMO, AR-JointZ
GS-Zinc, and the training dataset.

3.2 PROPERTY OPTIMIZATION RESULTS

We apply reverse optimization to generate a set of random molecules from the trained generative
model. For each experiment, the property optimization step was applied with 10,000 starting points
and all of the resulting minima are considered.

We consider the following model variants (1) LIMO: The original LIMO Eckmann et al. (2022). (2)
AR: LIMO with decoder replaced with an autoregressive Transformer model. (3) AR-JointZ: AR
with surrogate trained simultaneously with VAE. (4) CMLMC: Non-Autoregressive decoder model
from Huang et al. (2022) For LIMO, AR and AR-JointZ, we further consider different molecular
string representation schemes (see Section 2.1 for more details on the various molecular representa-
tions).

The results in Tables 2 show the number of binding ligands and the average property scores of
those ligands for the human estrogen receptor (PDB 1ERR) target by considering 10,000 generated
molecules each. We also report in Appendix Table 3, 4, 5 the results for molecules with the top 100
BA, the molecules with the top 100 SA, and the molecules with the top 100 QED respectively. The
AR VAE decoder with the GroupSELFIES variants has the molecules with the best generated SA,
QED (tokens provided by Cheng et al. (2022)), and BA (tokens extracted from ZINC250K).

We also include the corresponding property values of the training dataset (ZINC250K) as a refer-
ence. Note that the property values of generated molecules are even better than those of the training
dataset. This demonstrates the great potential of using LIMO for de novo drug discovery.

Figure 1 compares the distributions of property values for optimized molecules generated by LIMO,
AR-JointZ GS-Zinc, and the training dataset. We can see that AR-JointZ with GS-ZINC representa-
tion improves the original LIMO model across all metrics. The model even outperforms the training
dataset in terms of BA and QED values.
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3.3 LATENT SPACE ANALYSIS

While Table 2 shows that the trained models are able to match the property distribution in the training
dataset approximately, Table 3, 4, 5 in Appendix show that the optimized molecules, however, fall
short of molecules with the best property values in the training dataset. This difference in the best
property values is due to the surrogate model-based optimization in the latent space.

We first investigate the organization of the latent space and identify features that would indicate the
ease of optimization in this space. Figure 2 shows the property value distribution in the learned
latent space of LIMO. In the case of sequentially training the VAE and then the surrogate, the latent
space receives no explicit feedback from the property values. Hence, the property values are not
smoothly distributed, i.e. molecules decoded from the same neighborhood of the latent space can
have large variations in their property values.

Since the surrogate is a simple approximation of the true latent space to property mapping, we
measure the mean-squared error and the Dirichlet energy (Equation 1) to quantify the difference
in surface smoothness, as well as the local correlation as measured using the pearson correlation
coefficient to quantify the correctness of gradient directions in both the surfaces.

λy =
1

N
yTLy (1)

Figure 2: Objective plotted along a random sub-
space of the latent space. Latent space points were
decoded to molecules by uniformly sampling a re-
gion constructed using two orthogonal random di-
rections. The plot shows that objective values vary
greatly even for nearby latent points.

where y is the property value, L = D−A, D is
the degree matrix, A is the KNN adjacency ma-
trix, and N is the number of samples considered
for computing the Dirichlet energy. The prop-
erty value measured in our experiments is the
weighted sum of SA, QED, and BA as used in
Eckmann et al. (2022). The training molecules
are encoded into the latent space and 5 nearest
neighbors are found using KNN which are then
used to compute the Dirichlet energy.

The mean-squared error was found to decrease
when training the surrogate jointly with the
VAE (0.634) vs when training them separately
(0.986), indicating that joint training leads to a
better fit.

Additionally, the Dirichlet energies are lower
when jointly training (33.31 vs 94.04), in-
dicating that optimizing for properties using
the jointly trained surrogate leads to smoother
changes in property values i.e. molecules de-
coded from the same neighborhood of the la-
tent space tend to have more similar property
values.

Lastly, the local correlation as measured using
the pearson correlation coefficient decreases
when jointly training (0.48 vs 0.76), indicating that local gradient-based optimization using the
jointly trained surrogate is less accurate.

4 FUTURE WORK

4.1 LATENT SPACE ORGANIZATION

While jointly training the VAE and the surrogate improves the generated molecules by explicit feed-
back making the latent space interpolable with respect to properties, further improvements to the
latent space organization via topological constraints Moor et al. (2021); Keller & Welling (2022) is
a promising direction.
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4.2 SEMI-AUTOREGRESSIVE MODELLING

There is a tradeoff between controllable generation and sequence modeling ability by changing the
non-autoregressive decoder to an autoregressive one. Huang et al. (2022) is an attempt at merging
the best of both worlds by having an iterative non-autoregressive decoder. Other such approaches
include semi-autoregressive models such as those used in Han et al. (2023) which generate blocks
of text autoregressively, and order-agnostic autoregressive models such as those used in Alamdari
et al. (2023) which can generate text in an arbitrary order i.e. not just left to right.

4.3 FURTHER ANALYSIS OF GROUPSELFIES TOKENS

The experiments done in this work show that the performance of the GroupSELFIES tokens depends
greatly on the extracted tokens. While there is no obvious difference between the tokens extracted
from different datasets, further study is needed to determine the cause of the apparent different in
performance.

Pursuing these directions should improve the properties of molecules generated by LIMO, as well
as maintain the ability to constrain the molecular scaffold.
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A APPENDIX

We report the top 100 molecules in terms of SA, BA and QED in the corresponding tables.

Table 3: Top 100 BA molecules

Model Variants Count with valid AutoDock BA BA ↓ SA ↓ QED ↑

LIMO

Default-Retrained 9813 -7.05 4.94 0.58
GS-Paper 8729 -7.65 3.54 0.49

GS-USPTO 9947 -7.55 4.75 0.59
GS-Zinc 9868 -7.46 4.97 0.57

AR Default 9194 -6.80 5.18 0.67
Joint-Z 9229 -7.16 4.32 0.78

AR-JointZ
GS-Paper 9768 -6.53 3.05 0.82

GS-USPTO 9939 -7.11 3.41 0.77
GS-Zinc 9967 -7.11 3.65 0.84

CMLMC 8758 -7.85 4.04 0.28

Dataset ZINC250K 242591 -8.22 3.08 0.51

Table 4: Top 100 SA molecules

Model Variants Count with valid AutoDock BA BA ↓ SA ↓ QED ↑

LIMO

Default-Retrained 9813 -3.24 2.19 0.52
GS-Paper 8729 -3.36 1.12 0.53

GS-USPTO 9947 -3.52 2.27 0.56
GS-Zinc 9868 -3.87 2.57 0.54

AR Default 9194 -4.38 2.14 0.68
Joint-Z 9229 -5.02 1.80 0.85

AR-JointZ
GS-Paper 9768 -5.10 1.72 0.74

GS-USPTO 9939 -5.19 1.83 0.85
GS-Zinc 9967 -5.37 2.01 0.85

CMLMC 8758 -4.40 1.74 0.22

Dataset ZINC250K 242591 -4.74 1.42 0.80
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Table 5: Top 100 QED molecules

Model Variants Count with valid AutoDock BA BA ↓ SA ↓ QED ↑

LIMO

Default-Retrained 9813 -5.49 4.65 0.83
GS-Paper 8729 -5.47 3.02 0.91

GS-USPTO 9947 -5.83 4.51 0.89
GS-Zinc 9868 -5.93 4.60 0.86

AR Default 9194 -5.52 3.83 0.91
Joint-Z 9229 -5.46 2.74 0.94

AR-JointZ
GS-Paper 9768 -5.23 2.55 0.94

GS-USPTO 9939 -5.54 2.57 0.94
GS-Zinc 9967 -5.67 2.60 0.94

CMLMC 8758 -5.43 4.59 0.77

Dataset ZINC250K 242591 -5.38 2.75 0.95
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